摘要:
An improved prober for an electronic devices test system is provided. The prober is “configurable,” meaning that it can be adapted for different device layouts and substrate sizes. The prober generally includes a frame, at least one prober bar having a first end and a second end, a frame connection mechanism that allows for ready relocation of the prober bar to the frame at selected points along the frame, and a plurality of electrical contact pins along the prober bar for placing selected electronic devices in electrical communication with a system controller during testing. In one embodiment, the prober is be used to test devices such as thin film transistors on a glass substrate. Typically, the glass substrate is square, and the frame is also square. In this way, “x” and “y” axes are defined by the frame. The electrical pins may be movable along the axial length of the prober bars, or may be selectively pushed down to contact selected contact pads on the substrate.
摘要:
In a first aspect, a method of curing ink on a substrate is provided. The method includes the steps of (1) placing a substrate on a support stage of an ink curing chamber; and (2) scanning an electron beam over a surface of the substrate within the ink curing chamber so as to cure ink present on the substrate. Numerous other aspects are provided.
摘要:
A substrate table and method for supporting and transferring a substrate are provided. The substrate table includes a segmented stage having an upper surface for supporting a substrate, and an end effector. The end effector includes two or more spaced apart fingers and an upper surface for supporting a substrate. The end effector is at least partially disposed and moveable within the segmented stage such that the fingers of the end effector and the segmented stage interdigitate to occupy the same horizontal plane. The segmented stage is adapted to raise and lower about the end effector.
摘要:
A method of testing electronic devices on substrates is described. The method includes placing a configurable prober over a first substrate, testing the first substrate, re-configuring the configurable prober, placing the configurable prober over a second substrate, and testing the second substrate.
摘要:
An improved prober for an electronic devices test system is provided. The prober is “configurable,” meaning that it can be adapted for different device layouts and substrate sizes. The prober generally includes a frame, at least one prober bar having a first end and a second end, a frame connection mechanism that allows for ready relocation of the prober bar to the frame at selected points along the frame, and a plurality of electrical contact pins along the prober bar for placing selected electronic devices in electrical communication with a system controller during testing. In one embodiment, the prober is be used to test devices such as thin film transistors on a glass substrate. Typically, the glass substrate is square, and the frame is also square. In this way, “x” and “y” axes are defined by the frame. The electrical pins may be movable along the axial length of the prober bars, or may be selectively pushed down to contact selected contact pads on the substrate.
摘要:
In a first aspect, a substrate positioning system includes a plurality of pushers arranged in a spaced relation about a stage adapted to support a substrate. Each pusher is adapted to assume a retracted position so as to permit the substrate to be loaded onto and unloaded from the stage, extend toward an edge of the substrate that is supported by the stage, contact the edge of the substrate, and continue extending so as to cause the substrate to move relative to the stage until the substrate is calibrated to the stage. Numerous other aspects are provided.
摘要:
A system and method for supporting and transferring a substrate relative to a plurality of testing columns are provided. The system includes a testing table adapted to support and move the substrate relative to the plurality of testing columns. The testing table may include an end effector disposed therein to transfer the substrate relative to an upper surface of the testing table. The method includes transferring the substrate to the testing table and moving the substrate relative to the plurality of testing columns. Signals indicative of electronic device performance are sensed to determine operability of the devices on the substrate.
摘要:
A sensing system includes a plurality of probes arranged in a spaced relation around a stage that is adapted to support a substrate. Each probe includes a detection portion adapted to move from a known starting position toward an edge of the substrate that is supported by the stage; detect the edge of the substrate while the substrate is supported by the stage; generate a detection signal following said detection; and stop moving toward the edge of the substrate following said detection. A controller may determine an edge position of the substrate relative to the stage based on the known starting position of each detection portion and based on the detection signal generated by each detection portion. Numerous other aspects are provided.
摘要:
An improved prober for an electronic devices test system is provided. The prober is “configurable,” meaning that it can be adapted for different device layouts and substrate sizes. The prober generally includes a frame, at least one prober bar having a first end and a second end, a frame connection mechanism that allows for ready relocation of the prober bar to the frame at selected points along the frame, and a plurality of electrical contact pins along the prober bar for placing selected electronic devices in electrical communication with a system controller during testing. In one embodiment, the prober is be used to test devices such as thin film transistors on a glass substrate. Typically, the glass substrate is square, and the frame is also square. In this way, “x” and “y” axes are defined by the frame.
摘要:
Methods and apparatus for inkjet inkjet drop positioning are provided. A first method includes determining an intended deposition location of an ink drop on a substrate, depositing the ink drop on the substrate using an inkjet printing system, detecting a deposited location of the deposited ink drop on the substrate, comparing the deposited location to the intended location, determining a difference between the deposited location and the intended location, and compensating for the difference between the deposited location and the intended location by adjusting a parameter of an inkjet printing system. Numerous other aspects are provided.