Abstract:
An acrylic composition includes the reaction product of an acrylic polymer, a carbamate having anhydride-reactive functionality and carbamate functionality, and a carboxylic acid anhydride that is reactive with the carbamate to form a carboxylic acid carbamate. The acrylic polymer includes the reaction product of a functionalized monomer, a first compound reactive with the functionalized monomer to form a functionalized intermediate, and a highly branched, polyfunctional core molecule reactive with the functionalized intermediate. The first compound includes vinyl functionality reactive with the functionalized monomer and epoxy functionality. The carboxylic acid carbamate has the carbamate functionality and carboxylic acid functionality that is reactive with the acrylic polymer. The acrylic composition is highly-branched and, when used in coating compositions in combination with a suitable cross-linking agent, enhances recoat adhesion and produces cured films that have optimum scratch, mar, and chip performance, and acid etch resistance.
Abstract:
An acrylic composition is formed by reacting a functionalized, chain-stopping monomer, a first compound, and a highly-branched, polyfunctional core molecule. The first compound includes vinyl functionality and at least one other functionality that is different from the vinyl functionality, such as epoxy functionality. The first compound, specifically the vinyl functionality of the first compound, reacts with the monomer to form a functionalized intermediate, and the core molecule reacts with this functionalized intermediate to form the acrylic composition.
Abstract:
The present invention is directed to a rheology control agent. The rheology control agent is used in a coating composition and is the reaction product of a first compound comprising a plurality of hydroxyl groups, of a lactone compound, and of a carbamate compound. The present invention is also directed to a coating composition including the rheology control agent and to a method of preparing the rheology control agent.
Abstract:
The present invention is directed to a polymeric pigment dispersant to be used as a grind resin to incorporate pigment into a pigment dispersion for a coating composition. The polymeric pigment dispersant is the reaction product of dipentaerylthritol, hexahydrophthalic anhydride, glycidylneodecanoate, dimethylethanolamine, and polyphosphoric acid. The present invention is also directed to a method of preparing the polymeric pigment dispersant. In this method, the dipentaerythritol and the hexahydrophthalic anhydride are polymerized to form an intermediate compound. Next, an epoxy group of the glycidylneodecanoate reacts with the intermediate compound, and then the dimethylethanolamine salts the intermediate compound. Finally, the polyphosphoric acid is added to form the completed polymeric pigment dispersant. The polymeric pigment dispersant has improved stability in the pigment dispersion and is utilized for efficient wetting and grinding of the pigment in the pigment dispersion.
Abstract:
The present invention provides a crosslinker for organic coatings having an amino resin core with substituents including more than one olefin functional group, a silicon-containing group, and at least one alkoxyalkyl or alkylol group. Coating compositions containing the crosslinker can be cured with radiation, especially ultraviolet radiation. The crosslinker can be included in a coating composition with one or more curable resins, applied onto a substrate and cured to form the cured coating of the invention.
Abstract:
A hyperbranched polyester polyol macromolecule, having a plurality of both embedded and exterior hydroxyl groups thereon, may be synthesized in a polymerization reaction having several steps. The hyperbranched polyol includes a central nucleus, a first chain extension, an intermediate substituent and a second chain extension. The central nucleus is a hydrocarbon structure with a plurality of oxygen atoms. The first chain extender is attached to the central nucleus and includes a carboxylic ester group and a plurality of hydroxyl groups. The intermediate substituent is attached to the first chain extender, and is a polyfunctional carboxylic acid or anhydride thereof. The preferred intermediate substituent is a cyclic compound. The second chain extension is attached to the intermediate substituent. The preferred second chain extension includes a glycidyl ester or epoxy. Methods of making a hyperbranched polyester polyol are also disclosed. Coating compositions in which the hyperbranched polyol is reacted with an aminoplast or with an isocyanate are also encompassed by the invention.
Abstract:
A method of preparing a carbamate-functional polymer comprising the steps of providing a hydroxy-functional polymer and reacting a carbamate compound with the hydroxy-functional polymer in the presence of a transcarbamation catalyst, thereby forming a carbamate-functional polymer. The transcarbamation catalyst may be Bi(III) compounds, Zr(IV) compounds, or mixtures of these.
Abstract:
A method of recycling a plastic includes decomposing the plastic in the presence of a catalyst to form hydrocarbons. The catalyst includes a porous support having an exterior surface and defining at least one pore therein. The catalyst also includes a depolymerization catalyst component disposed on the exterior surface of the porous support for depolymerizing the plastic. The depolymerization catalyst component includes a Ziegler-Natta catalyst, a Group IIA oxide catalyst, or a combination thereof. The catalyst further includes a reducing catalyst component disposed in the at least one pore.
Abstract:
A method of recycling a plastic includes decomposing the plastic in the presence of a catalyst to form hydrocarbons. The catalyst includes a porous support having an exterior surface and defining at least one pore therein. The catalyst also includes a depolymerization catalyst component disposed on the exterior surface of the porous support for depolymerizing the plastic. The depolymerization catalyst component includes a Ziegler-Natta catalyst, a Group IIA oxide catalyst, or a combination thereof. The catalyst further includes a reducing catalyst component disposed in the at least one pore.
Abstract:
Disclosed is a method for making nongelled addition polymers, especially carbamate functional additional polymers from linear unsaturated anhydrides. The method comprises reacting an unsaturated linear anhydride with an active hydrogen compound to provide two monomers comprising polymerizable C═C bonds, at least one of said monomers comprising an acid functional group; polymerizing the polymerizable C═C bonds of the two monomers to provide an acid functional polymerization product; and reacting the acid functional polymerization product with an epoxy functional compound to provide a nongelled addition polymer, wherein the disclosed method does not include a step comprising the physical removal of any acid functional monomers or polymerization products. Also disclosed is a curable coating composition containing the resulting carbamate functional polymer, as well as a coated substrate comprising a cured film resulting from the application and curing of the disclosed curable coating composition.