Abstract:
In an embodiment, a device includes: a first redistribution structure including a first dielectric layer; a die adhered to a first side of the first redistribution structure; an encapsulant laterally encapsulating the die, the encapsulant being bonded to the first dielectric layer with first covalent bonds; a through via extending through the encapsulant; and first conductive connectors electrically connected to a second side of the first redistribution structure, a subset of the first conductive connectors overlapping an interface of the encapsulant and the die.
Abstract:
A package structure is provided. The package structure includes a semiconductor die and a thermoelectric structure disposed on the semiconductor die. The thermoelectric structure includes P-type semiconductor blocks, N-type semiconductor blocks and metal pads. The P-type semiconductor blocks and the N-type semiconductor blocks are arranged in alternation with the metal pads connecting the P-type semiconductor blocks and the N-type semiconductor blocks. When a current flowing through one of the N-type semiconductor block, one of the metal pad, and one of the P-type semiconductor block in order, the metal pad between the N-type semiconductor block and the P-type semiconductor block forms a cold junction which absorbs heat generated by the semiconductor die.
Abstract:
In an embodiment, a device includes: a first redistribution structure including a first dielectric layer; a die adhered to a first side of the first redistribution structure; an encapsulant laterally encapsulating the die, the encapsulant being bonded to the first dielectric layer with first covalent bonds; a through via extending through the encapsulant; and first conductive connectors electrically connected to a second side of the first redistribution structure, a subset of the first conductive connectors overlapping an interface of the encapsulant and the die.
Abstract:
A device includes a first package component, and a second package component underlying, and bonded to, the first package component. A molding material is disposed under the first package component and molded to the first and the second package components, wherein the molding material and the first package component form an interface. An isolation region includes a first edge, wherein the first edge of the isolation region contacts a first edge of the first package component and a first edge of the molding material. The isolation has a bottom lower than the interface.
Abstract:
A die has a top surface, and a metal pillar having a portion protruding over the top surface of the die. A sidewall of the metal pillar has nano-wires. The die is bonded to a package substrate. An underfill is filled into the gap between the die and the package substrate.
Abstract:
A package structure is provided. The package structure includes a semiconductor die and a thermoelectric structure disposed on the semiconductor die. The thermoelectric structure includes P-type semiconductor blocks, N-type semiconductor blocks and metal pads. The P-type semiconductor blocks and the N-type semiconductor blocks are arranged in alternation with the metal pads connecting the P-type semiconductor blocks and the N-type semiconductor blocks. When a current flowing through one of the N-type semiconductor block, one of the metal pad, and one of the P-type semiconductor block in order, the metal pad between the N-type semiconductor block and the P-type semiconductor block forms a cold junction which absorbs heat generated by the semiconductor die.
Abstract:
In an embodiment, a device includes: a first redistribution structure including a first dielectric layer; a die adhered to a first side of the first redistribution structure; an encapsulant laterally encapsulating the die, the encapsulant being bonded to the first dielectric layer with first covalent bonds; a through via extending through the encapsulant; and first conductive connectors electrically connected to a second side of the first redistribution structure, a subset of the first conductive connectors overlapping an interface of the encapsulant and the die.
Abstract:
In an embodiment, a device includes: a first redistribution structure including a first dielectric layer; a die adhered to a first side of the first redistribution structure; an encapsulant laterally encapsulating the die, the encapsulant being bonded to the first dielectric layer with first covalent bonds; a through via extending through the encapsulant; and first conductive connectors electrically connected to a second side of the first redistribution structure, a subset of the first conductive connectors overlapping an interface of the encapsulant and the die.
Abstract:
A device includes a first package component, and a second package component underlying, and bonded to, the first package component. A molding material is disposed under the first package component and molded to the first and the second package components, wherein the molding material and the first package component form an interface. An isolation region includes a first edge, wherein the first edge of the isolation region contacts a first edge of the first package component and a first edge of the molding material. The isolation has a bottom lower than the interface.
Abstract:
A device includes a first package component, and a second package component underlying, and bonded to, the first package component. A molding material is disposed under the first package component and molded to the first and the second package components, wherein the molding material and the first package component form an interface. An isolation region includes a first edge, wherein the first edge of the isolation region contacts a first edge of the first package component and a first edge of the molding material. The isolation has a bottom lower than the interface.