Abstract:
The present invention relates to a chemical vapor deposition raw material for producing a ruthenium thin film or a ruthenium compound thin film by a chemical deposition method, the chemical vapor deposition raw material including a dinuclear ruthenium complex in which carbonyl and a nitrogen-containing organic ligand (L) are coordinated to metallically bonded two rutheniums, the dinuclear ruthenium complex being represented by the following formula (1): A raw material according to the present invention is capable of producing a high-purity ruthenium thin film, and has a low melting point and moderate thermal stability. Thus, the raw material according to the present invention is suitable for use in electrodes of various kinds of devices.
Abstract:
The present invention relates to a raw material for chemical deposition for producing a ruthenium thin film or a ruthenium compound thin film by a chemical deposition method, containing a ruthenium complex represented by the following Chemical Formula 1. In Chemical Formula 1, ligands L1 and L2 coordinated to ruthenium are represented by the following Chemical Formula 2. The raw material for chemical deposition according to the present invention can be formed into a high quality thin film even if a reaction gas containing an oxygen atom is not used. wherein R1 to R12, which are substituents of the ligands L1 and L2, are each independently any one of a hydrogen atom, and a linear or branched alkyl group having a carbon number of 1 or more and 4 or less.
Abstract:
A method for manufacturing tris(β-diketonato)iridium by reacting β-diketone with an iridium compound, in which an activation treatment including (a) an alkali treatment and (b) an acid treatment described below is applied to the iridium compound to activate the iridium compound, and to subsequently react the β-diketone, (a) an alkali treatment: a treatment of adding alkali to a solution of the iridium compound to raise pH of the solution to a more alkaline side than that before the alkali addition and to not less than 10, and (b) an acid treatment: a treatment of adding acid to the solution subjected to the alkali treatment to lower pH of the solution to a more acidic side than that before the acid addition and to make the pH difference between solutions before and after the acid addition be not less than 0.1 and not more than 10. The present invention allows manufacture of tris(β-diketonato)iridium utilizing a wide variety of β-diketones.
Abstract:
The present invention relates to a raw material for chemical deposition shown in a formulae below and including an organoplatinum compound in which diimine containing two imines and an alkyl anion are coordinated to divalent platinum. In the formulae, each of substituents R1 to R4 on the diimine represents a hydrogen atom, an alkyl group or the like and has a carbon number of 5 or less. Each of alkyl anions R5 and R6 is an alkyl group having a carbon number of 1 or more and 3 or less. The raw material has high vapor pressure and low decomposition temperature, and thus it is possible to manufacture a platinum thin film at low temperature.
Abstract:
The present invention provides a chemical vapor deposition raw material, which has a low melting point, has heat stability such that no thermal decomposition occurs during vaporization, readily decomposes at low temperature during film-formation, and can stably form a nickel thin-film having fewer impurities. The present invention relates to a chemical vapor deposition raw material containing an organic nickel compound, in which a cyclopentadienyl group or a derivative thereof is coordinated to nickel, and a cycloalkenyl group having one allyl group or a derivative thereof is coordinated to the carbon skeleton of cycloalkyl. This raw material has a low melting point, proper heat stability and film-formation ability at low temperature. Further, due to a high vapor pressure, the raw material is suitable for a three-dimensional electrode material having a three-dimensional structure.
Abstract:
The present invention relates to a raw material of an organoruthenium compound for producing a ruthenium thin film or a ruthenium compound thin film by a chemical deposition method. This organoruthenium compound is an organoruthenium compound represented by the following Formula 1 and including a trimethylenemethane-based ligand (L1) and three carbonyl ligands coordinated to divalent ruthenium. In Formula 1, the trimethylenemethane-based ligand L1 is represented by the following Formula 2:
wherein a substituent R of the ligand L1 is hydrogen, or any one of an alkyl group, a cyclic alkyl group, an alkenyl group, an alkynyl group, and an amino group having a predetermined number of carbon atoms.
Abstract:
The present invention relates to a chemical deposition raw material including a heterogeneous polynuclear complex in which a cyclopentadienyl and a carbonyl are coordinated to a first transition metal and a second transition metal as central metals, the chemical deposition raw material being represented by the following formula. In the following formula, the first transition metal (M1) and the second transition metal (M2) are mutually different. The number of cyclopentadienyls (L) is 1 or more and 2 or less, and to the cyclopentadienyl is coordinated one of a hydrogen atom and an alkyl group with a carbon number of 1 or more and 5 or less as each of substituents R1 to R5. With the chemical deposition raw material of the present invention, a composite metal thin film or a composite metal compound thin film containing plural metals can be formed from a single raw material.
Abstract:
A heterogeneous polynuclear complex for use as a raw material in the chemical deposition of composite metal or composite metal thin films with the below formula. In the formula, M1 and M2 are mutually different transition metals, x is an integer of 0 or more and 2 or less, y is in integer of 1 or more and 2 or less, z is an integer of 1 or more and 10 or less, R1 to R4 are each one of a hydrogen atom and an alkyl group with a carbon number of 1 or more and 5 or less, and R5 is a hydrogen atom, a carbonyl, an alkyl group with a carbon number of 1 or more and 7 or less, an allyl group or an allyl derivative. The heterogeneous polynuclear complex allows a composite metal thin film or a composite metal compound thin film containing a plurality of metals to be formed from a single raw material.
Abstract:
The present invention relates to a raw material for a cyclometalated iridium complex, and provides a technique that makes it possible to obtain a cyclometalated iridium complex in higher yield at a lower reaction temperature than using tris(2,4-pentanedionato)iridium(III). The present invention relates to a raw material for a cyclometalated iridium complex, including an organic iridium material for producing a cyclometalated iridium complex, the organic iridium material being a tris(β-diketonato)iridium(III), in which an asymmetric β-diketone is coordinated to iridium.
Abstract:
A method for producing a nickel thin film on a Si substrate by a chemical vapor deposition method, in which the nickel thin film is formed by use of a hydrocarbon-type nickel complex represented by a following formula as a raw material compound, which is a nickel complex in which a cyclopentadienyl group (Cp) or a derivative thereof and a chain or cyclic alkenyl group having 3 to 9 carbon atoms or a derivative thereof are coordinated to nickel and an element other than carbon and hydrogen is not contained in the structure, use of hydrogen as a reaction gas, and use of a film formation pressure of 1 to 150 torr and a film formation temperature of 80 to 250° C. as film formation conditions (In the formula, X represents a chain or cyclic alkenyl group having 3 to 9 carbon atoms or a derivative thereof. R1 to R5 which are substituent groups of the cyclopentadienyl group represent CnH2n+1 and n represents an integer of 0 to 6).