Abstract:
A displacement device for displacing a displacement volume is disclosed. The device has a first fluid space and a second fluid space. A first piston is arranged in a movable manner within the first fluid space. The first fluid space is connectable to a pipetting device. The first piston is actuatable by an actuation volume of air or of liquid provided by the pipetting device. A second piston is arranged in a movable manner within the second fluid space. The second piston is constructed to displace a displacement volume of a fluid located within the second fluid space when the second piston is actuated. The second piston is actuated in dependence on the first piston that is actuated by the actuation volume. The actuation volume is different from the displacement volume, and a pipetting system has a displacement device and a method of displacing a displacement volume.
Abstract:
A method for determining physical parameters of a liquid to be aspirated and/or dispensed by a laboratory automation device comprises: picking up of a pipette with the laboratory automation device; lowering the pipette into a sample container with the laboratory automation device, the sample container containing the liquid; aspirating and dispensing air and liquid with the laboratory automation device in such a way, that a liquid level in the pipette solely rises in a first step and solely lowers in a second step, such that an interior surface of the pipette is wetted with liquid solely one time; and during aspirating and dispensing air and liquid, measuring a pressure curve in the pipette and determining the physical parameters from the pressure curve, the physical parameters comprising at least one of a surface tension, a wetting angle and a viscosity.
Abstract:
The invention relates to a pipetting device having an exchangeable pipette tip for suctioning and discharging fluid volumes for use in automated laboratory systems. The invention relates to a pipetting device having a pipette tip detection unit and for detecting a pipette tip on a pipette device of this type. A detection unit detects whether a pipette tip is connected to the pipette tube or determines a characteristic feature of the connected pipette tip. The pipette tip forms at least one portion of a first electrode when the pipette tip is in electrical operative contact with the pipette tube and, e.g., a pipette tip holder, a contact for setting down the pipette tip holder or a working table over which the pipette tube can be moved forms at least one portion of a second electrode.
Abstract:
An optical measuring apparatus and method for analysis of samples contained in liquid drops provided by a liquid handling system has a liquid handling tip. A light source irradiates the liquid drop; a detector measures sample light; and an optics system with first optical elements transmits irradiation light, and a processor processes the measurement signals. The liquid drop is suspended at the liquid handling orifice of the liquid handling tip in a position where the liquid drop is penetrated by a first optical axis defined by the light source and the first optical elements. The liquid drop is physically touched only by the liquid handling tip and the liquid sample inside the liquid handling tip. A mutual adaption of the size and position of the liquid drop with respect to the first optical elements is achieved.
Abstract:
An optical measuring apparatus and method for analysis of samples contained in liquid drops provided by a liquid handling system has a liquid handling tip. A light source irradiates the liquid drop; a detector measures sample light; and an optics system with first optical elements transmits irradiation light, and a processor processes the measurement signals. The liquid drop is suspended at the liquid handling orifice of the liquid handling tip in a position where the liquid drop is penetrated by a first optical axis defined by the light source and the first optical elements. The liquid drop is physically touched only by the liquid handling tip and the liquid sample inside the liquid handling tip. A mutual adaption of the size and position of the liquid drop with respect to the first optical elements is achieved.