Abstract:
A method for communicating in a wireless sensor network (WSN) is described. Using control logic, a first wireless transceiver is caused to transmit a wireless packet to a node in a wireless sensor network. The control logic bases its causing on a transmission coinciding with a break in transmission for a second wireless network, such that the transmission from the first wireless transceiver does not coincide with transmissions made on the second wireless network. Time synchronized channel hopping (TSCH) slot frames for wireless packet transmission in the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing TSCH. Wake up sequence transmissions for the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing coordinated sampled listening (CSL).
Abstract:
Embodiments of the invention include a method for creating probe requests. The method is used when positioning is required. A short probe request is constructed with SSID set to GPS SSID_NAME. Another method continues after a short probe response is received. It is determined if a SSID of the probe response matches the SSID of the short probe request. If it does send an ACK.
Abstract:
A time slot assignment arrangement for ultralow power devices in a wireless communication network is disclosed. The time slot assigned to ultralow power device wakeup frame is identified as ultralow power timeslot using various indicators. The ultralow power timeslot is assigned as contention based timeslot allowing ultralow power devices in the wireless network to extend the interval for synchronizing with the network overcoming the short synchronization interval requirements of wireless communication network resulting in significant improvement in battery life by preserving the power needed for frequent synchronization with the wireless communication network.
Abstract:
A device operated in a network using a channel hopping communication protocol may select a channel for each transmission by first generating and storing a sequence of pseudo-random index numbers. A list of good channels is selected from a plurality of channels. For each channel hop, one of the good channels is selected from the list of good channels for use by a transceiver in the device by using an index number selected from the sequence of pseudo-random index numbers. The list of good channels may be revised periodically and channels may be selected from the list of good channels for use by the transceiver without revising the sequence of pseudo-random index numbers.
Abstract:
Embodiments of the invention provide a method for performing network resource allocation over hybrid networks so that application QoS requirements are met. The hybrid networks are represented as an undirected weighted graph with the communication links as edges irrespective of the communication medium. A QoS-based resource allocation model. Another embodiment further includes utility functions that capture the QoS attributes such as reliability, timeliness, fault-tolerance and lifetime allows determining routes and bandwidth allocation such that the total system utility across the entire network is maximized.
Abstract:
A method of transmitting association requests in a wireless sensor network includes transmitting an association request from a leaf node to an intermediate node. The method further includes transmitting the association request from the intermediate node during one of either a shared time slot or a dedicated time slot in response to at least one of the timing of dedicated time slots and data collision rates during shared time slots.
Abstract:
A method for managing Internet Protocol Version 6 (IPv6) addresses in a wireless sensor network is provided that includes storing, on a wireless sensor device in the wireless sensor network, a prefix of an IPv6 address in association with a key, forming an address indicator for the IPv6 address, the address indicator consisting of the key and a node address of the IPv6 address, and storing the address indicator in at least one memory location on the wireless sensor device in lieu of the IPv6 address.
Abstract:
A wireless device that tailors communications based on power parameters of the device. In one embodiment, a wireless device includes an energy source, a power monitor coupled to the energy source, a wireless transceiver, and a traffic controller coupled to the power monitor and the wireless transceiver. The power monitor is configured to measure a parameter of the energy source. The wireless transceiver is configured to wirelessly communicate via a wireless network. The traffic controller is configured to set length of packets to be transmitted based on the measured parameter of the energy source.
Abstract:
A device and method for controlling radio power in a wireless sensor network. A wireless sensor device includes a wireless transceiver, a white list generator, and power control logic. The wireless transceiver is configured to transmit and receive via a wireless sensor network. The white list generator configured to identify wireless sensor nodes that communicate directly with the wireless sensor device via the wireless sensor network, to identify time slots assigned for communication between the wireless sensor device and each of the identified wireless sensor nodes, and to create and maintain a list of the identified wireless sensor nodes and corresponding time slots. The power control logic is configured to power the transceiver for reception of transmissions from each identified wireless sensor node based on the identified time slots corresponding to the identified wireless sensor node provided in the list.
Abstract:
A system and method for reducing energy consumption in a wireless network. In one embodiment, a system includes a network coordinator configured to manage access to a wireless network. The network coordinator includes a controller. The controller is configured to define a channel hopping list that specifies on which channel a beacon signal is transmitted in each slot frame of the wireless network. The controller is also configured to set a number of time slots in each slot frame based on a length of the channel hopping list. The controller is further configured to transmit a first beacon signal in each slot frame on a channel specified by the channel hopping list. The number of slots in each slot frame causes the first beacon signal to be transmitted on a same channel in each slot frame.