Abstract:
An apparatus is provided. In the apparatus, there is an antenna package and an integrated circuit (IC). A circuit trace assembly is secured to the IC. A coupler (with an antenna assembly and a high impedance surface (HIS)) is secured to the circuit trace assembly. An antenna assembly has a window region, a conductive region that substantially surrounds the window region, a circular patch antenna that is in communication with the IC, and an elliptical patch antenna that is located within the window region, that is extends over at least a portion of the circular patch antenna, and that is in communication with the circular patch antenna. The HIS substantially surrounds the antenna assembly.
Abstract:
An apparatus is provided. Transmission line cells are formed in a first region. A first metallization layer is formed over the transmission line cells within a portion of the first region. At least a portion of the first metallization layer is electrically coupled to the plurality of transmission line cells. A second metallization layer is formed over the first metallization layer with an interconnect portion, and overlay portion, and a first balun. The interconnect portion at least partially extends into the first region, and the overlay portion is within the first region. The first balun winding is electrically coupled to the overlay portion and partially extends into a second region. The first region partially surrounds the second region. A third metallization layer is formed over the second metallization layer having a second balun winding within the second region, where the second winding is generally coaxial with the first balun winding.
Abstract:
An apparatus is provided. In the apparatus, there is an antenna package and an integrated circuit (IC). A circuit trace assembly is secured to the IC. A coupler (with an antenna assembly and a high impedance surface (HIS)) is secured to the circuit trace assembly. An antenna assembly has a window region, a conductive region that substantially surrounds the window region, a circular patch antenna that is in communication with the IC, and an elliptical patch antenna that is located within the window region, that is extends over at least a portion of the circular patch antenna, and that is in communication with the circular patch antenna. The HIS substantially surrounds the antenna assembly.
Abstract:
An apparatus is provided. In the apparatus, there is an antenna package and an integrated circuit (IC). A circuit trace assembly is secured to the IC. A coupler (with an antenna assembly and a high impedance surface (HIS)) is secured to the circuit trace assembly. An antenna assembly has a window region, a conductive region that substantially surrounds the window region, a circular patch antenna that is in communication with the IC, and an elliptical patch antenna that is located within the window region, that is extends over at least a portion of the circular patch antenna, and that is in communication with the circular patch antenna. The HIS substantially surrounds the antenna assembly.
Abstract:
An electronic device has a multilayer substrate that has an interface surface configured for interfacing to a dielectric waveguide. A conductive layer on the substrate is etched to form a dipole antenna disposed adjacent the interface surface to provide coupling to the dielectric waveguide. A reflector structure is formed in the substrate adjacent the dipole antenna opposite from the interface surface.
Abstract:
An electronic device has a multilayer substrate that has an interface surface configured for interfacing to a dielectric waveguide. A conductive layer on the substrate is etched to form a dipole antenna disposed adjacent the interface surface to provide coupling to the dielectric waveguide. A reflector structure is formed in the substrate adjacent the dipole antenna opposite from the interface surface.
Abstract:
An apparatus is provided. A differential pair of transistors is configured to receive a first differential signal having a first frequency, and a transformer, having a primary side and a secondary side is provided. The primary side of the transformer is coupled to the differential pair of transistors, and the secondary side of the transformer is configured to output a second differential signal having a second frequency, where the second frequency is greater than the first frequency. A first transistor is coupled to the first supply rail, the primary side of the transformer, and the differential pair of transistors, where the first transistor is of a first conduction type. A second transistor is coupled to the second supply rail, the primary side of the transformer, and the differential pair of transistors, where the second transistor is of a second conduction type.
Abstract:
An apparatus is provided. A differential pair of transistors is configured to receive a first differential signal having a first frequency, and a transformer, having a primary side and a secondary side is provided. The primary side of the transformer is coupled to the differential pair of transistors, and the secondary side of the transformer is configured to output a second differential signal having a second frequency, where the second frequency is greater than the first frequency. A first transistor is coupled to the first supply rail, the primary side of the transformer, and the differential pair of transistors, where the first transistor is of a first conduction type. A second transistor is coupled to the second supply rail, the primary side of the transformer, and the differential pair of transistors, where the second transistor is of a second conduction type.