Abstract:
Optical time domain reflectometer (OTDR) systems, methods and integrated circuits are presented for locating defects in an optical cable or other optical cable, in which a first optical signal is transmitted to the cable and reflections are sampled over a first time range at a first sample rate to identify one or more suspected defect locations, and a second optical signal is transmitted and corresponding reflections are sampled over a second smaller time range at a higher second sample rate to identify at least one defect location of the optical cable for relaxed memory requirements in the OTDR system.
Abstract:
A spur correction system for a transmit chain having an interleaving multiplexer. In some embodiments, the spur correction system includes a spur sense chain, a correction controller, and a Q path corrector. The interleaving multiplexer combines signals from multiple bands in response to a clock signal. The spur sense chain estimates an error that is in phase with the clock signal (an I-phase error) and an error that is a derivative of the clock signal (a Q-phase error). The correction controller compensates for the estimated I-phase error by injecting an I-phase correction signal into the transmit chain. The Q path corrector compensates for the estimated Q-phase error by selectively connecting one or more capacitors within the interleaving multiplexer.
Abstract:
Optical time domain reflectometer (OTDR) systems, methods and integrated circuits are presented for locating defects in an optical cable or other optical cable, in which a first optical signal is transmitted to the cable and reflections are sampled over a first time range at a first sample rate to identify one or more suspected defect locations, and a second optical signal is transmitted and corresponding reflections are sampled over a second smaller time range at a higher second sample rate to identify at least one defect location of the optical cable for relaxed memory requirements in the OTDR system.
Abstract:
A system can include a signal image correlator receives a discrete frequency domain representation of a signal tone in an interleaved analog-to-digital (IADC) signal and an image of the signal tone in the discrete frequency domain representation of the IADC signal and determines a correlation between the signal tone and the image of the signal tone, a power of the signal tone and a power of the image of the signal tone. The system can also include a frequency domain estimator that determines an instantaneous frequency domain mismatch profile estimate based on the correlation between the signal tone and the image of the signal tone. The system can further include an averaging filter that averages the instantaneous frequency domain mismatch profile estimate over time to provide a frequency domain mismatch profile estimate.
Abstract:
A system can include a signal image correlator receives a discrete frequency domain representation of a signal tone in an interleaved analog-to-digital (IADC) signal and an image of the signal tone in the discrete frequency domain representation of the IADC signal and determines a correlation between the signal tone and the image of the signal tone, a power of the signal tone and a power of the image of the signal tone. The system can also include a frequency domain estimator that determines an instantaneous frequency domain mismatch profile estimate based on the correlation between the signal tone and the image of the signal tone. The system can further include an averaging filter that averages the instantaneous frequency domain mismatch profile estimate over time to provide a frequency domain mismatch profile estimate.
Abstract:
An optical data transmitter is operable to transmit data other than test data on an optical fiber at a first wavelength and an optical time domain reflectometer is operable to receive data from the optical fiber at the first wavelength and to use the received data at the first wavelength to determine whether a defect exists in the optical fiber.
Abstract:
Apparatus and methods disclosed herein implement an RF receive-band filter at a receive chain input of a wireless base station with a co-located transmitter and receiver. The RF receive-band filter includes an adaptive filter component to perform filtering operations on samples of a digital baseband or intermediate frequency signal x(n) from a transmit chain associated with the wireless base station. An adaptive filter transfer function is determined in real time such that samples of the baseband transmit signal x(n) are transformed into a cancellation baseband signal z(n). The digital cancelation baseband signal z(n) is then digital-to-analog converted and the resulting analog baseband signal z(t) is up-converted to obtain a subtractive RF cancelation signal c(t). C(t) is summed with a desirable received signal RF component r(t) and an undesirable transmitter leakage RF signal component l(t) appearing at the input to the base station receiver. C(t) cancels l(t), leaving r(t) to be processed by the receiver section of the base station.
Abstract:
In an example, a system includes an input channel and a voltage to delay converter (V2D) coupled to the input channel. The system also includes a first multiplexer coupled to the V2D and an analog-to-digital converter (ADC) coupled to the first multiplexer. The system includes a second multiplexer coupled to the input channel and an auxiliary ADC coupled to the second multiplexer. The system includes calibration circuitry coupled to an output of the auxiliary ADC, where the calibration circuitry is configured to correct a non-linearity in a signal provided by the input channel. The calibration circuitry is also configured to determine the non-linearity of the signal provided to the ADC relative to the signal provided to the auxiliary ADC.
Abstract:
A one-time write, read-only memory for storing trimming parameters includes an address pointer table, a fixed packet portion, and a flexible packet portion. The fixed packet portion includes one or more fixed packets, each fixed packet including trimming parameters for a component identified for trimming during a design phase. The flexible packet portion includes one or more flexible packets of different types. Each flexible packet includes trimming parameters for a component identified for trimming after the design phase. One packet type includes a length section and a number of fields equal to a value stored in the length section. Each field includes an address, a trimming parameter, and a mask. Another packet type includes trimming parameters associated with operands in operating instructions for a microcontroller, where the operands include an address and a mask.
Abstract:
Methods and apparatus for reducing non-linearity in analog to digital converters are disclosed. An example apparatus includes an analog-to-digital converter to convert an analog signal into a digital signal; and a non-linearity corrector coupled to the analog-to-digital converter to determine a derivative of the digital signal; determine cross terms including a combination of the digital signal and the derivative of the digital signal; and determine a non-linearity term corresponding to a combination of the cross terms.