Abstract:
A computing-in-memory circuit comprises a computing element array and an analog-to-digital conversion circuit. The computing element array is utilized for analog computation operations. The computing element array includes memory cells, a first group of computing elements, and a second group of computing elements. The first group of computing elements provides capacitance for analog computation in response to an input vector and receives data from the plurality of memory cells and the input vector. The second group of computing elements provides capacitance for quantization. Each computing element of the computing element array is based on a switched-capacitors circuit. The analog-to-digital conversion circuit includes a comparator and a conversion control unit. The comparator has a signal terminal, a reference terminal, and a comparison output terminal, wherein the first and second groups of computing elements are selectively coupled to the signal terminal and the reference terminal.
Abstract:
The present disclosure provides a signal conversion circuit and fingerprint identification system. The signal conversion circuit is configured to generate a first digital signal according to a first analog signal, and includes a comparator and counter. The comparator includes a first input terminal configured to receive the first analog signal, a second input terminal connected to a reference voltage generator and configured to receive a reference voltage, and an output terminal configured to output a second digital signal. The counter is connected to the output terminal, and is configured to generate a first digital signal. The signal conversion circuit according to the present disclosure has the advantages of simple circuit structure, small circuit area, low cost and low power consumption.
Abstract:
An analog-digital conversion circuit (ADC1) includes: a capacitor (C1); a charge and discharge control section (6) that puts, into the capacitor (C1), an electric charge corresponding to an input current of a first period and that causes an electric charge corresponding to an input current of a second period to be discharged from the capacitor (C1); and a digital conversion section (5) that converts an amount of electric charge of the capacitor (C1) into a digital signal.
Abstract:
An analog to digital converter includes a dielectric substrate, an analog input wire, and digital output wires, with a metal insulator extending over the digital output wires. The analog input wire can be in proximity to the dielectric substrate and can generate heat when an electric current flows through the analog input wire. The digital output wires can also be in proximity to the dielectric substrate. The metal insulator can have a phase transition temperature above which the metal insulator is electrically conductive to short circuit at least one of the digital output wires in contact with a metal insulator portion above the phase transition temperature. The digital output wires can be arranged at predetermined distances from the analog input wire such that output wires have varying short circuit thresholds.
Abstract:
An analog to digital converter includes a resistor-divider network including a plurality of resistors, an arbel channel circuit configured to generate a voltage sawtooth signal as an output, a dc-offset disposed to couple a node of the resistor-divider network and the arbel-channel circuit. The converter further includes a voltage reference circuit configured to generate a reference voltage, and a differential comparator configured to compare the voltage sawtooth signal with the reference voltage to produce a digital output signal corresponding to the voltage sawtooth signal. Method of converting an analog signal to a digital signal is also described.
Abstract:
The invention relates to an analog to digital converter computing all the bits in parallel or sequentially, without using decoding logic having an analog input and a digital output, wherein given the analog signal x, each bit can be computed by applying a formula containing a non linear periodic function which may be sine shaped or pulse shaped.
Abstract:
A fully optical converter for converting an analog signal into a digital signal includes an amplitude to optical wavelength converter for converting the analog signal into an optical signal which varies in wavelength in accordance with an amplitude of the analog signal, a splitter for applying the optical signal over a desired number of light paths, an interferometer connected to each of the light paths, unequal path lengths in each leg of the interferometers to allow optical interference to deliver a complementary sinusoidal transfer function to the optical signal to generate two complimentary output signals and a dual detector connected to each of the interferometers for generating a digital bit in response to the two complimentary output signals, wherein each of the digital bits together form a parallel digital word. The fully optically based converter is automatic and independent of interactive techniques, thus providing for an expedited conversion rate.
Abstract:
An analog-to-digital (A/D) converter using a charge-coupled device (CCD) for converting analog data to digital data, the CCD including a plurality of gates with potential wells, the number of gates corresponding to a number of bits of the digital data, and a size of each potential well corresponding to a given significant bit and being one-half the size of the potential well corresponding to the next most significant bit. The charges of an input analog signal are transmitted to respective potential wells. A plurality of driving circuits apply a voltage to the respective potential wells and output the charges stored in the respective potential wells as digital data.
Abstract:
A folding-type A/D converter for converting an analog input signal to an n-bit digital code, the A/D converter having a transfer function dividing the analog input signal into at least n-1 segments, each such n-1 segment having an amplitude level corresponding to the significance of a given bit of the digital code and having linear parts which are mirror images of one another extending over 2.sup.n transition levels L. The A/D converter includes voltage-current converters for converting voltage input signals to current signals, a plurality of circuit stages for producing the linear parts in the current domain in response to the current signals, and a converter for converting the linear parts to a logic 1 or logic 0 of the bits of the digital code.