Abstract:
Provided are a method of manufacturing a capacitor capable of achieving a high dielectric constant property and a low leakage current, a capacitor, and a method of forming a dielectric film used in the capacitor. The capacitor is fabricated by forming a lower electrode layer on a substrate; forming a first TiO2 film having an interface control function on the lower electrode layer; forming a ZrO2-based film on the first TiO2 film; performing an annealing process for crystallizing ZrO2 in the ZrO2-based film, after forming the ZrO2-based film; forming a second TiO2 film which serves as a capacity film on the ZrO2-based film; and forming an upper electrode layer on the second TiO2 film.
Abstract:
A method includes: storing a first flow rate from an oxygen mass flow controller for supplying an oxygen with an ozone generator turned off and measuring a flow rate of the oxygen supplied to the ozone generator, and a second flow rate from at least one ozone mass flow controller provided in flow paths; supplying the ozone into a processing container via the flow paths to perform multiple times a predetermined ozone-based process; acquiring a third flow rate from the oxygen mass flow controller and a fourth flow rate from the at least one ozone mass flow controller, by supplying the oxygen with the ozone generator turned off during a predetermined period between the ozone-based processes; and determining whether the fourth flow rate is a normal value by comparing the first and second flow rates with the third and fourth flow rates, respectively.
Abstract:
Provided is a substrate processing apparatus which includes: first and second vacuum transfer chambers which are partitioned from each other; processing chambers configured to perform a vacuum processing onto substrates; a load lock chamber installed to be sandwiched between the first and second vacuum transfer chambers, and including partition valves installed between the load lock chamber and a normal pressure atmosphere, and between the load lock chamber and each of the first and second vacuum transfer chambers; and substrate mounting tables inside the load lock chamber and configured to move between an upper position at which the substrates are transferred between the load lock chamber and the normal pressure atmosphere, and a lower position at which the substrates are transferred between the load lock chamber and the first or second vacuum transfer chamber.
Abstract:
Provided is a gas supply apparatus having a source gas supply system configured to supply a source gas to a processing container using a carrier gas, wherein the source gas is generated from a liquid raw material consisting of an organic metal material. The gas supply apparatus includes a raw material storage tank configured to store the liquid raw material therein; a gas supply portion installed to the raw material storage tank and connected to a carrier gas passage, wherein the carrier gas passage allows the carrier gas to flow; a gas outflow portion installed to the raw material storage tank and connected to a source gas passage, wherein the source gas passage allows the source gas to flow; and a baffle plate configured to prevent the carrier gas injected from the gas supply portion from being brought into direct contact with a liquid surface of the raw material.