Abstract:
A substrate processing apparatus includes a processing chamber, a turntable rotatably provided inside the processing chamber, a plurality of placing tables rotatable with respect to the turntable and placed with a plurality of substrates, respectively, at positions separated from a rotation center of the turntable, and a plurality of nozzles disposed at positions passing centers of the plurality of placing tables as the turntable rotates. The plurality of nozzles include a processing gas discharger configured to discharge a processing gas with respect to the plurality of substrates on the plurality of placing tables that move with the rotation of the turntable, in a radial range shorter than a radius of the plurality of substrates, and a gas suction section configured to suck a gas at an outer side of the processing gas discharger.
Abstract:
A semiconductor device manufacturing method that includes: forming a gate insulating film containing a hafnium oxide and a zirconium oxide on a workpiece having a source, a drain and a channel; and subjecting the gate insulating film to a crystallization heat treatment at a temperature of 600 degrees C. or less is provided. The gate insulating film subjected to the crystallization heat treatment has a relative permittivity of 27 or more.
Abstract:
A nozzle for supplying a fluid includes a tubular part including a tubular passage thereinside and a fluid discharge surface having a plurality of fluid discharge holes formed therein along a lengthwise direction of the tubular passage. A partition plate is provided in the tubular passage and extends along the lengthwise direction so as to partition the tubular passage into a first area including the fluid discharge surface and a second area without the fluid discharge surface. The partition plate has distribution holes whose number is less than a number of the plurality of fluid discharge holes in the lengthwise direction. A fluid introduction passage is in communication with the second area.
Abstract:
A method of depositing a film is provided. In the method, one operation of a unit of film deposition process is performed by carrying a substrate into a processing chamber, by depositing a nitride film on the substrate, and by carrying the substrate out of the processing chamber after finishing depositing the nitride film on the substrate. The one operation is repeated a predetermined plurality of number of times continuously to deposit the nitride film on a plurality of substrates continuously. After that, an inside of the processing chamber is oxidized by supplying an oxidation gas into the processing chamber.
Abstract:
In discharging a source gas from a first process gas nozzle, rectifying members including a coolant flow passage provided in a concertinaing manner therein are arranged both sides of the first process gas nozzle. Then, a coolant at a temperature higher than a liquefaction temperature of the source gas and lower than a thermal decomposition temperature of the source gas is flown through the coolant flow passage, by which the first process gas nozzle is cooled through the rectifying member.
Abstract:
Provided is a method of forming a gate insulating film for use in a MOSFET for a power device. An AlN film is formed on a SiC substrate of a wafer W and then the formation of an AlO film and the formation of an AlN film on the formed AlO film are repeated, thereby forming an AlON film having a laminated structure in which AlO films and AlN films are alternately laminated. A heat treatment is performed on the AlON film having the laminated structure.
Abstract:
Provided is a plasma processing apparatus, which includes a table unit installed within a processing vessel and configured to place a substrate thereon, a purge gas supply unit configured to supply a process gas into the processing vessel, a plasma generating unit configured to turn the process gas to plasma, a magnetic field forming mechanism installed at a lateral side of the table unit and configured to form magnetic fields in a processing atmosphere in order to move electrons existing in the plasma of the process gas along a surface of the substrate; and an exhaust mechanism configured to exhaust gas from the interior of the processing vessel. The magnetic fields are opened at at-least one point in a peripheral edge portion of the substrate such that a loop of magnetic flux lines surrounding the peripheral edge portion of the substrate is not formed.
Abstract:
A deposition apparatus including: a processing chamber; a rotary table provided in the processing chamber; a first processing region provided at a predetermined position in a circumferential direction of the rotary table; a second processing region provided downstream of the first processing region in the circumferential direction of the rotary table; a third processing region provided downstream of the second processing region in the circumferential direction of the rotary table; a first heater provided above the rotary table in the second processing region; and a plasma generator. The plasma generator includes: a protrusion having a longitudinally elongated shape in a planar view extending along a radius of the rotary table in a portion of an upper surface of the processing chamber, and protruding upward from the upper surface; and a coil wound along a side surface of the protrusion and has a longitudinally elongated shape in a planar view.
Abstract:
A substrate processing method is provided. In the method, a plurality of substrates is placed on a plurality of substrate holding areas provided in a surface of a turntable at predetermined intervals in a circumferential direction, the turntable being provided in a processing chamber. Next, the turntable on which the plurality of substrates is placed is rotated. Then, a fluid is supplied to the surface of the turntable while rotating the turntable. Here, the fluid is supplied to an area between the plurality of substrate holding areas in response to an operation of changing a flow rate of the fluid.
Abstract:
Provided is a gas supply apparatus which includes a raw material gas supply system for supplying a raw material gas into a processing container, a tank to store a liquid raw material, a main heating unit for heating the bottom and sides of the tank, a ceiling heating unit for heating a ceiling portion of the tank, a main temperature measurement unit for measuring a temperature of a region of the main heating unit, a ceiling temperature measurement unit for measuring a temperature of the ceiling heating unit, a liquid phase temperature measurement unit for measuring a temperature of the liquid raw material, a vapor phase temperature measurement unit for measuring a temperature of a vapor phase portion in the upper part of the tank, a level measurement unit for measuring a liquid level of the liquid raw material, and a temperature control unit for controlling the heating units.