Abstract:
By first forming an emulsion in a system that separates into two phases which include a solution phase containing an ethylene-vinyl alcohol copolymer (A) as the main component and a solution phase containing a polymer (B) different from the ethylene-vinyl alcohol copolymer (A) as the main component when the copolymer (A), the polymer (B), and an organic solvent (C) having an SP value of 20 (J/cm3)1/2 to 30 (J/cm3)1/2 are dissolved and mixed together, and then causing the ethylene-vinyl alcohol copolymer (A) to precipitate as microparticles by bringing a poor solvent (D) of the ethylene-vinyl alcohol copolymer (A) into contact with the emulsion, it is possible to obtain ethylene-vinyl alcohol copolymer microparticles that have a narrow particle size distribution wherein the particle size distribution index in a dry-powder state is 2 or less, have a true spherical particle shape, and exhibit excellent re-dispersibility into liquid.
Abstract:
Fine polymer particles made by a method include producing an emulsion in a liquid prepared by dissolving and mixing a polymer A and a polymer B in organic solvents in which a solution phase composed primarily of the polymer A and a solution phase composed primarily of the polymer B are formed as separate phases, wherein the solvents in the two phases resulting from the phase separation are substantially identical to each other, and contacting the emulsion with a poor solvent for the polymer A to precipitate the polymer A, wherein the particles have a glass transition point of 150° C. or more and 400° C. or less, an average particle diameter of 1 μm or more to 100 μm or less, and a particle diameter distribution index of the particles is 2 or less, wherein the polymer A is nonvinyl type polymer.
Abstract:
A fine polymer particle production method includes producing an emulsion in a liquid prepared by dissolving and mixing a polymer A and a polymer B in organic solvents in which a solution phase composed primarily of the polymer A and a solution phase composed primarily of the polymer B are formed as separate phases, and bringing it into contact with a poor solvent for the polymer A to precipitate the polymer A. This method serves for easy synthesis of fine polymer particles with a narrow particle size distribution and the method can be effectively applied to production of highly heat-resistant polymers that have been difficult to produce with the conventional methods.
Abstract:
Provided are: fine vinylidene fluoride resin particles which are solid and have an average particle diameter of 0.3 μm or more but less than 100 μm, a particle diameter distribution index of 1-2, a repose angle of less than 40°, and an average sphericity of 80 or more said fine vinylidene fluoride particles being suitable for coating materials and coating applications; and a method for producing the fine vinylidene fluoride resin particles.
Abstract:
A method produces polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of a polymer (B) at a temperature equal to or higher than the crystallization temperature of a polyamide to be obtained, wherein the polyamide monomer (A) and the polymer (B) are homogeneously dissolved at the start of polymerization, and polyamide fine particles are precipitated after the polymerization. Polyamide fine particles have a number average particle size of 0.1 to 100 μm, a sphericity of 90 or more, a particle size distribution index of 3.0 or less, a linseed oil absorption of 100 mL/100 g or less, and a crystallization temperature of 150° C. or more. In particular, a polyamide having a high crystallization temperature includes fine particles having a smooth surface, a narrow particle size distribution, and high sphericity.
Abstract:
A method produces polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of a polymer (B) at a temperature equal to or higher than the crystallization temperature of a polyamide to be obtained, wherein the polyamide monomer (A) and the polymer (B) are homogeneously dissolved at the start of polymerization, and polyamide fine particles are precipitated after the polymerization. Polyamide fine particles have a number average particle size of 0.1 to 100 μm, a sphericity of 90 or more, a particle size distribution index of 3.0 or less, a linseed oil absorption of 100 mL/100 g or less, and a crystallization temperature of 150° C. or more.
Abstract:
A thermosetting resin composition contains at least: [A] a thermosetting resin; [B] a curing agent; and [C] polyamide particles satisfying following (c1) to (c6): (c1) a melting point of polyamide resin constituting the polyamide particles is 200 to 300° C.; (c2) a crystallization temperature of the polyamide resin constituting the polyamide particles is 150° C. to 250° C.; (c3) a number average particle size of the polyamide particles is 1 to 100 μm; (c4) a sphericity of the polyamide particles is 80 to 100; and (c5) the linseed oil absorption of the polyamide particles is 10 to 100 mL/100 g. A thermosetting resin composition of the present invention enables suitable production of a fiber-reinforced composite material having sufficient compressive strength after impact and wet heat compression performance.
Abstract:
A method produces polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of a polymer (B) at a temperature equal to or higher than the crystallization temperature of a polyamide to be obtained, wherein the polyamide monomer (A) and the polymer (B) are homogeneously dissolved at the start of polymerization, and polyamide fine particles are precipitated after the polymerization. Polyamide fine particles have a number average particle size of 0.1 to 100 μm, a sphericity of 90 or more, a particle size distribution index of 3.0 or less, a linseed oil absorption of 100 mL/100 g or less, and a crystallization temperature of 150° C. or more.
Abstract:
A polysiloxane-polyalkylene glycol block copolymer obtained by reacting a polysiloxane (A) having a functional group selected from the group consisting of a carboxylic anhydride group, a hydroxyl group, an epoxy group, an amino group, and a thiol group with a polyalkylene glycol (B) having a functional group selected from the group consisting of a carboxylic anhydride group, a hydroxyl group, an amino group, an epoxy group, and a thiol group to obtain a polysiloxane-polyalkylene glycol block copolymer intermediate, and further reacting a part of the carboxyl groups of the polysiloxane-polyalkylene glycol block copolymer intermediate with a compound reactive with a carboxyl group, wherein a content of a structure derived from the polysiloxane (A) is 30% by mass or more and 70% by mass or less with respect to 100% by mass of the entire polysiloxane-polyalkylene glycol block copolymer, and the polysiloxane-polyalkylene glycol block copolymer has a carboxyl group content of 0.1 mmol/g to 0.75 mmol/g and a weight average molecular weight of 5,000 to 500,000.
Abstract:
Provided are: fine vinylidene fluoride resin particles which are solid and have an average particle diameter of 0.3 μm or more but less than 100 μm, a particle diameter distribution index of 1-2, a repose angle of less than 40°, and an average sphericity of 80 or more said fine vinylidene fluoride particles being suitable for coating materials and coating applications; and a method for producing the fine vinylidene fluoride resin particles.