VERTICAL GATE FIELD EFFECT TRANSISTOR

    公开(公告)号:US20210210534A1

    公开(公告)日:2021-07-08

    申请号:US16736134

    申请日:2020-01-07

    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.

    Back-side deep trench isolation (BDTI) structure for pinned photodiode image sensor

    公开(公告)号:US10304886B2

    公开(公告)日:2019-05-28

    申请号:US15795681

    申请日:2017-10-27

    Abstract: The present disclosure relates to a CMOS image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within a substrate and respectively comprising a photodiode. A back-side deep trench isolation (BDTI) structure is disposed between adjacent pixel regions, extending from a back-side of the substrate to a position within the substrate. The BDTI structure comprises a doped layer lining a sidewall surface of a deep trench and a dielectric fill layer filling a remaining space of the deep trench. By forming the disclosed BDTI structure that functions as a doped well and an isolation structure, the implantation processes from a front-side of the substrate is simplified, and thus the exposure resolution, the full well capacity of the photodiode, and the pinned voltage is improved.

    HIGH CAPACITANCE MIM DEVICE WITH SELF ALIGNED SPACER

    公开(公告)号:US20220246469A1

    公开(公告)日:2022-08-04

    申请号:US17352812

    申请日:2021-06-21

    Abstract: The present disclosure, in some embodiments, relates to a method of forming a capacitor structure. The method includes forming a capacitor dielectric layer over a lower electrode layer, and forming an upper electrode layer over the capacitor dielectric layer. The upper electrode layer is etched to define an upper electrode and to expose a part of the capacitor dielectric layer. A spacer structure is formed over horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and also along sidewalls of the upper electrode. The spacer structure is etched to remove the spacer structure from over the horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and to define a spacer. The capacitor dielectric layer and the lower electrode layer are etched according to the spacer to define a capacitor dielectric and a lower electrode.

    BACK-SIDE DEEP TRENCH ISOLATION (BDTI) STRUCTURE FOR PINNED PHOTODIODE IMAGE SENSOR

    公开(公告)号:US20190096929A1

    公开(公告)日:2019-03-28

    申请号:US15795681

    申请日:2017-10-27

    Abstract: The present disclosure relates to a CMOS image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within a substrate and respectively comprising a photodiode. A back-side deep trench isolation (BDTI) structure is disposed between adjacent pixel regions, extending from a back-side of the substrate to a position within the substrate. The BDTI structure comprises a doped layer lining a sidewall surface of a deep trench and a dielectric fill layer filling a remaining space of the deep trench. By forming the disclosed BDTI structure that functions as a doped well and an isolation structure, the implantation processes from a front-side of the substrate is simplified, and thus the exposure resolution, the full well capacity of the photodiode, and the pinned voltage is improved.

Patent Agency Ranking