Abstract:
Contaminant-sequestering coatings include a network of hydrolyzed silane compounds including (i) a plurality of fluorinated functionalities, and (ii) a plurality of thiol functional groups are provided. The network of hydrolyzed silane compounds includes a fluorinated silane including (a) a hydrophilic polar head region. The polar head region includes one or multiple units of ethylene glycol (EG) functionality, (b) a fluorine-containing region, and (c) an anchor region including a silicon atom. The contaminant-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species, or any combination thereof.
Abstract:
Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.
Abstract:
A sensor for measuring ocean water salinity is described. The sensor may include a measurement clock circuit, a control clock circuit, and a comparator circuit. The measurement clock circuit, having an output that varies with salinity of a fluid, may have a first circuit architecture that includes a capacitive gap assembly that permits a fluid to flow into a gap between two electrodes of the capacitive gap assembly. The control clock circuit, having an output that does not vary with salinity of the fluid, may have a second circuit architecture comprising a capacitor. The comparator circuit may be configured to compare the controlled clock output to the measured clock output over a duration of time to determine a salinity measurement of the fluid. The first circuit architecture may differ from the second circuit architecture in that an electrically connected position of the capacitive gap assembly within the first circuit architecture is the electrically connected position of the capacitor within the second circuit architecture.
Abstract:
Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
Abstract:
A medical device includes a plurality of drug-eluting nanofibers directly or indirectly located over an outer surface of the medical device, or utilized independently as a tissue engineering scaffold. The plurality of drug-eluting nanofibers include one or more therapeutic agents. Additional embodiments include a fabric having a plurality of drug-eluting nanofibers, in which the plurality of drug-eluting nanofibers include one or more therapeutic agents
Abstract:
A nanofiber comprising a polyamide including at least one substituted phenyl group is provided. The nanofiber includes an average diameter from about 50 to about 1000 nm. A fibrous mat including a plurality of the nanofibers is also provided. A composite including a plurality of the nanofibers and a continuous matrix resin is also provided. A method of forming the nanofibers is also provided.
Abstract:
The present disclosure relates to modified metal-organic frameworks (MOFs) and a post-synthetic modification method that simultaneously enhances hydrophilicity and water stability to achieve high-performance water sorption materials.
Abstract:
A water harvesting device includes at least a first adsorption column including a first inlet, a first outlet, and a first interior region. A sorbent material is located within the first interior region of the first adsorption column. The sorbent material includes a metal organic framework (MOF) material including a plurality of metal ions or clusters of metal ions coordinated to one or more organic linkers, a plurality of nanofabrics comprising a hydrogel material, or a combination thereof.
Abstract:
A contaminant-sequestering coating includes a network of hydrolyzed silane compounds. The hydrolyzed silane compounds include a hydrophilic polar head region, a hydrophobic linker, and an anchor region including a silicon atom. The network of hydrolyzed silane compounds is devoid or substantially devoid of fluorine atoms. Methods of destroying one or more perfluoroalkyl and/or polyfluoroalkyl (PFAS) compounds present in a contaminant-containing liquid are also provided.
Abstract:
Contaminate-sequestering coatings including a network of hydrolyzed silane compounds including a plurality of thiol functional groups, a plurality of fluorinated functionalities, or both are provided. The contaminate-sequestering coatings may sequester one or more per- and polyfluoroalkyl substances (PFAS), heavy metals, biological species or any combination thereof. Methods of functionalizing a substrate surface with contaminate-sequestering functionalities that sequester one or more PFAS, heavy metals, or both are also provided. Methods of removing contaminants from contaminate-containing liquids, and devices including the contaminate-sequestering coatings are also provided.