Abstract:
An exhaust device includes: a first pressure regulator provided in an exhaust pipe connected to a processing container; a second pressure regulator provided on a downstream side of the first pressure regulator; a first vacuum gauge provided on an upstream side of the first pressure regulator; and a second vacuum gauge provided between the first pressure regulator and the second pressure regulator.
Abstract:
There is provided a method of forming a semiconductor film, including: a first process of supplying a first semiconductor raw material gas onto a substrate having recesses formed therein to form a first semiconductor film in each of the recesses, each of the recesses being covered with an insulating film; a second process of supplying a halogen-containing etching gas onto the substrate to etch the first semiconductor film while exposing a surface of the insulating film in an upper portion of an inner wall of each of the recesses and leaving the first semiconductor film formed on a bottom surface of each of the recesses; and a third process of simultaneously supplying a halogen-containing semiconductor gas and a semiconductor hydride gas onto the substrate to form a second semiconductor film on the first semiconductor film formed on the bottom surface of each of the recesses.
Abstract:
There is provided a cleaning method of a film forming apparatus in which a process of forming a silicon film, a germanium film or a silicon germanium film on a substrate mounted on a substrate holder in a processing container is performed, comprising: etching away the silicon film, the germanium film or the silicon germanium film adhered to an interior of the processing container including the substrate holder by supplying a halogen-containing gas not containing fluorine into the processing container in a state where the substrate holder, which was stored in a dew point-controlled atmosphere after the film forming process, is accommodated in the processing container with no substrate being mounted thereon.
Abstract:
A method for manufacturing a semiconductor device includes supplying a silicon-containing gas to a substrate having a recess formed in a surface of the substrate to deposit a silicon film in the recess, supplying, to the substrate, a first etching gas having a first etching profile in which an amount of etching for an upper portion of the recess in a depth direction and an amount of etching for a lower portion of the recess in the depth direction are different from each other, to etch the silicon film in the recess, supplying, to the substrate, a second etching gas having a second etching profile that is different from the first etching profile of the first etching gas to etch the silicon film in the recess, and additionally depositing the silicon film on the already deposited silicon film etched by the second etching gas.
Abstract:
A film forming method includes forming an amorphous semiconductor film on a recess, forming a first polycrystalline semiconductor film by performing heat treatment on the amorphous semiconductor film, and forming a second polycrystalline semiconductor film on the first polycrystalline semiconductor film formed by the heat treatment.
Abstract:
There is provided a method of forming a polysilicon film, which includes: forming an amorphous silicon film on a substrate; forming a cap layer, which is formed of an amorphous germanium film or an amorphous silicon germanium film, on the amorphous silicon film; forming crystal nuclei of a silicon in the amorphous silicon film by heating the substrate at a first temperature; removing the cap layer after the crystal nuclei are formed; and growing the crystal nuclei by heating the substrate from which the cap layer is removed, at a second temperature equal to or higher than the first temperature.
Abstract:
A substrate processing apparatus includes: a processing vessel configured to be vacuumed; a holding unit configured to hold a plurality of substrates and to be inserted into or separated from the processing vessel; a gas supply unit configured to supply gas into the processing vessel; a plasma generation box partitioned and formed by a plasma partition wall; an inductively coupled electrode located at an outer sidewall of the plasma generation box along its length direction; a high frequency power supply connected to the inductively coupled electrode through a feed line; and a ground electrode located outside the plasma generation box and between the processing vessel and the inductively coupled electrode and arranged in the vicinity of the outer sidewall of the plasma generation box or at least partially in contact with the outer sidewall.
Abstract:
An operating method of a vertical heat treatment apparatus which performs a film forming process by keeping the interior of a vertical reaction tube surrounded by a heating mechanism at a vacuum atmosphere and by supplying film forming gases to substrates accommodated within the reaction tube, includes: performing a film forming process with respect to the substrates by carrying a substrate holder holding a plurality of substrates in a shelf form into the reaction tube; carrying out the substrate holder from the reaction tube; and carrying a cooling jig into the reaction tube to cool an inner wall of the reaction tube so as to peel a thin film adhering to the inner wall of the reaction tube by a thermal stress and so as to collect the thin film in the cooling jig by thermophoresis.