Abstract:
An oxynitride phosphor powder has a fluorescence peak wavelength of 610 to 625 nm and also has higher external quantum efficiency than the conventional one. The oxynitride phosphor powder includes an α-type SiAlON and aluminum nitride, represented by the compositional formula: Cax1Eux2Si12−(y+z)Al(y+z)OzN16−z wherein x1, x2, y, z fulfill the following formulae: 1.60≦x1+x2≦2.90, 0.18≦x2/x1≦0.70, 4.0≦y≦6.5, 0.0≦z≦1.0. The powder can additionally contain Li in an amount of 50 to 10000 ppm. The content of the aluminum nitride may be more than 0 mass % to less than 33 mass %.
Abstract:
A nitride phosphor includes a (Ca,Sr)AlSiN3:Eu phosphor, of which the chemical composition can be controlled easily and which has excellent fluorescent properties. A method produces a nitride phosphor represented by the formula: (Ca1-x1-x2Srx1Eux2)aAlbSicN2a/3+b+4/3c (wherein 0.49
Abstract:
Provided are a polycrystalline silicon ingot casting mold and a method for producing a polycrystalline silicon ingot casting mold, with which high-quality silicon ingots can be obtained at high yields by minimizing sticking with the surfaces of the silicon ingot casting mold, and losses and damages that occur when solidified silicon ingot is released from the mold. The method for producing a polycrystalline silicon ingot casting mold having a release layer, including: forming a slurry by mixing a silicon nitride powder with water, coating the surface of the mold with the slurry, and heating the mold at 400 to 800° C. in an atmosphere containing oxygen, after coating the slurry.
Abstract:
A silicon nitride powder having a specific surface area of 4.0 to 9.0 m2/g, a β phase proportion of less than 40 mass %, and an oxygen content of 0.20 to 0.95 mass %, wherein a frequency distribution curve obtained by measuring a volume-based particle size distribution by a laser diffraction scattering method has two peaks, peak tops of the peaks are present respectively at 0.4 to 0.7 μm and 1.5 to 3.0 μm, a ratio of frequencies of the peak tops ((frequency of the peak top in a particle diameter range of 0.4 to 0.7 μm)/(frequency of the peak top in a particle diameter range of 1.5 to 3.0 μm)) is 0.5 to 1.5, and a ratio D50/DBET (μm/μm) of a median diameter D50 (μm) determined by the measurement of particle size distribution to a specific surface area-equivalent diameter DBET (μm) calculated from the specific surface area is 3.5 or more.
Abstract:
An oxynitride phosphor powder contains α-SiAlON and aluminum nitride, obtained by mixing a silicon source, an aluminum source, a calcium source, and a europium source to produce a composition represented by a compositional formula: Cax1Eux2Si12−(y+z)Al(y+z)OzN16−z (wherein x1, x2, y and z are 0
Abstract:
A method of manufacturing a wavelength conversion member including a polycrystalline ceramics includes mixing a substance serving as a silicon source, a substance serving as an aluminum source, a substance serving as a calcium source, and a substance serving as a europium source; firing the obtained mixture to obtain an oxynitride phosphor powder; then sintering the oxynitride phosphor powder in an inert atmosphere to obtain the polycrystalline ceramics, characterized in that the sintered oxynitride phosphor powder has a composition (excluding oxygen) represented by the Formula: Cax1Eux2Si12-(y+z)Al(y+z)OzN16-z (in the Formula, x1, x2, y, and z are values such that 0
Abstract:
A silicon nitride powder to be used in a slurry for forming a mold release layer of a polycrystalline silicon casting mold, wherein the specific surface area thereof is 5-50 m2/g, the proportion of amorphous silicon nitride is 1.0-25.0 mass %, and the oxygen content is 0.6-2.5 mass %. A silicon nitride powder slurry for use in mold release material and capable of forming, on a polycrystalline silicon casting mold, a mold release layer which exhibits favorable mold release properties and exhibits favorable adhesion to the casting mold after casting the polycrystalline silicon ingot, and a method for producing the same. A silicon nitride powder for mold release material, a silicon nitride powder for a slurry use for obtaining the silicon nitride powder slurry for use in the mold release material, and a method for producing the same. A polycrystalline silicon casting mold which exhibits favorable mold release properties of a polycrystalline silicon ingot; and method for producing the same.
Abstract:
A silicon nitride powder having a specific surface area of 4.0 to 9.0 m2/g, a β phase proportion of less than 40 mass %, and an oxygen content of 0.20 to 0.95 mass %, wherein a frequency distribution curve obtained by measuring a volume-based particle size distribution by a laser diffraction scattering method has two peaks, peak tops of the peaks are present respectively at 0.4 to 0.7 μm and 1.5 to 3.0 μm, a ratio of frequencies of the peak tops ((frequency of the peak top in a particle diameter range of 0.4 to 0.7 μm)/(frequency of the peak top in a particle diameter range of 1.5 to 3.0 μm)) is 0.5 to 1.5, and a ratio D50/DBET (μm/μm) of a median diameter D50 (μm) determined by the measurement of particle size distribution to a specific surface area-equivalent diameter DBET (μm) calculated from the specific surface area is 3.5 or more.
Abstract:
Provided are a polycrystalline silicon ingot casting mold and a method for producing a polycrystalline silicon ingot casting mold, with which high-quality silicon ingots can be obtained at high yields by minimizing sticking with the surfaces of the silicon ingot casting mold, and losses and damages that occur when solidified silicon ingot is released from the mold. The method for producing a polycrystalline silicon ingot casting mold having a release layer, including: forming a slurry by mixing a silicon nitride powder with water, coating the surface of the mold with the slurry, and heating the mold at 400 to 800° C. in an atmosphere containing oxygen, after coating the slurry.