Abstract:
Provided is an electrostatic discharge (ESD) protection structure including a substrate, a pick-up region, a first MOS device, a second MOS device, a first doped region and a second doped region. The pick-up region is located in the substrate. The first MOS device has a first drain region of a first conductivity type located in the substrate. The second MOS device has a second drain region of the first conductivity type located in the substrate. The first drain region is closer to the pick up region than the second drain region is. The first doped region of a second conductivity type is located under the first doped region. The second doped region of the second conductivity type is located under the second doped region. The area and/or doping concentration of the first doped region is greater than that of the second doped region.
Abstract:
A CMOS device includes a substrate, a pMOS transistor and an nMOS transistor formed on the substrate, and a gated diode. The gated diode includes a floating gate formed on the substrate in between the pMOS transistor and the nMOS transistor and a pair of a p-doped region and an n-doped region formed in the substrate and between the pMOS transistor and the nMOS transistor. The n-doped region is formed between the floating gate and the nMOS transistor, and the p-doped region is formed between the floating gate and the pMOS transistor.
Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
Provided is a lateral BJT including a substrate, a well region, an area, at least one lightly doped region, a first doped region, and a second doped region. The substrate is of a first conductivity type. The well region is of a second conductivity type and is in the substrate. The area is in the well region. The at least one lightly doped region is in the well region below the area. The first doped region and the second doped region are of the first conductivity type and are in the well region on both sides of the area. The first doped region is connected to a cathode. The second doped region is connected to an anode, wherein the doping concentration of the at least one lightly doped region is lower than that of each of the first doped region, the second doped region, and the well region.
Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
A semiconductor device is described, including a substrate including a first area and a second area, a first MOS element of a first conductivity type in the first area, and a second MOS element of the first conductivity type in the second area. The first area is closer to a pick-up region of the substrate than the second area. The substrate has a second conductivity type. The bottom depth of a first electrical conduction path in the substrate in the first area is smaller than that of a second electrical conduction path in the substrate in the second area.
Abstract:
A method of manufacturing a fin diode structure includes providing a substrate, forming a doped well in said substrate, forming at least one doped region of first conductivity type or at least one doped region of second doped type in said doped well, performing an etching process to said doped region of first conductivity type or said doped region of second conductivity type to form a plurality of fins on said doped region of first conductivity type or on said doped region of second conductivity type, forming shallow trench isolations between said fins, and performing a doping process to said fins to form fins of first conductivity type and fins of second conductivity type.
Abstract:
A method of manufacturing a fin diode structure includes providing a substrate, forming a doped well in said substrate, forming at least one doped region of first conductivity type or at least one doped region of second doped type in said doped well, performing an etching process to said doped region of first conductivity type or said doped region of second conductivity type to form a plurality of fins on said doped region of first conductivity type or on said doped region of second conductivity type, forming shallow trench isolations between said fins, and performing a doping process to said fins to form fins of first conductivity type and fins of second conductivity type.
Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
A semiconductor structure and an integrated circuit are provided. The semiconductor structure includes a first field-effect transistor (FET), a second FET, an isolation structure, and a body electrode. The first FET includes a first active body having a first type conductivity. The second FET includes a second active body having the first type conductivity. The first active body and the second active body are isolated from each other by the isolation structure. The body electrode has the first type conductivity and formed in the second active body.