Abstract:
A method of forming a component by investment casting includes disposing at least a portion of an investment casting pin within a core. The investment casting pin includes a ceramic base pin having a perimeter and a length extending perpendicular to the perimeter and a sacrificial coating disposed about the perimeter of the ceramic base pin along at least a portion of the length of the ceramic base pin. A metal casting is formed around the core. The core and the sacrificial coating are leached with a leaching solution and the investment casting pin is removed from the metal casting.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.
Abstract:
A method casts a plurality of alloy parts in a mold (600; 700) having a plurality of part-forming cavities (601). The method comprises pouring a first alloy into the mold causing: the first alloy to branch into respective flows along respective first flowpaths (676, 684; 708) to the respective cavities; and a surface of the first alloy in the part-forming cavities to equilibrate. The method further comprises pouring a second alloy into the mold causing: the second alloy to branch into respective flows along respective second flowpaths (676, 680; 712) to the respective cavities.
Abstract:
A shot tube includes an inner bore for delivering molten material into a die-cast mold. The shot tube has an outer peripheral surface with at least one surface for receiving a locking member to lock the shot tube into an aperture in a fixed mold portion and an alignment structure for properly aligning the shot tube in the fixed mold portion. An opening receives molten material into the inner bore.
Abstract:
A method of investment casting includes casting a liquid nickel- or cobalt-based superalloy in an investment casting mold. The superalloy includes an yttrium alloying element that is subject to reactive loss during the casting. Loss of the yttrium is limited by using a zircon-containing facecoat on a refractory investment wall in the investment casting mold. The facecoat contacts the liquid nickel- or cobalt-based superalloy during the casting. Prior to the casting, a zircon-containing slurry is used to form the facecoat. After solidification of the nickel- or cobalt-based superalloy, the refractory investment wall is removed from the solidified superalloy.
Abstract:
A shot tube includes an inner bore for delivering molten material into a die-cast mold. The shot tube has an outer peripheral surface with at least one surface for receiving a locking member to lock the shot tube into an aperture in a fixed mold portion and an alignment structure for properly aligning the shot tube in the fixed mold portion. An opening receives molten material into the inner bore. A die-cast machine is also disclosed.
Abstract:
A plasma spray system including a turntable subsystem operable to position a multiple of work pieces on a respective multiple of workpiece mounts; a plasma spray subsystem operable to plasma spray the multiple of work pieces on said turntable subsystem; and an overspray wash subsystem operable to wash the multiple of work pieces on said turntable subsystem subsequent to plasma spray of the multiple of work pieces.
Abstract:
A method of fabricating an investment casting mold includes using a zircon-containing slurry to form a facecoat of a refractory investment wall of a mold cavity in an investment casting mold. The zircon-containing slurry includes, by weight, at least 70% of zircon powder. Also disclosed is a slurry for use in an investment casting mold. The slurry includes, by weight, at least 70% of zircon powder, 10%-30% of colloidal silica material, and 1%-10% of a carrier solvent. The method and slurry can be used to fabricate an investment casting mold that has a refractory investment wall with a facecoat having, by weight, at least 70% zircon.
Abstract:
A high-temperature die casting die includes a first die plate with a first recess and a second die plate with a second recess, the first and second recesses defining a main part cavity and gating. A grain selector is in fluid communication with the main cavity, and an in situ zone refining apparatus is adapted to apply a localized thermal gradient to at least one of the first and second die plates. The localized thermal gradient and the at least one die plate are movable relative to each other so as to apply the localized thermal gradient along a first direction extending from the grain selector longitudinally across the main part cavity.
Abstract:
A method of forming a component by investment casting includes disposing at least a portion of an investment casting pin within a core. The investment casting pin includes a ceramic base pin having a perimeter and a length extending perpendicular to the perimeter and a sacrificial coating disposed about the perimeter of the ceramic base pin along at least a portion of the length of the ceramic base pin. A metal casting is formed around the core. The core and the sacrificial coating are leached with a leaching solution and the investment casting pin is removed from the metal casting.