Abstract:
An apparatus and method relating to a least one wheel rotatable about a first axis while movably supporting a reflected light gathering unit extending along a second axis are disclosed.
Abstract:
A MEMS electrical cross-point switch is provided that includes a microelectronic substrate, a magnetic element attached to the microelectronic substrate that is free to move in a predetermined direction in response to a magnetic field and an electrical element connected to the magnetic element for movement therewith to selectively switch electric current. In one embodiment the magnetic element and the electrical element are connected via a tethering device that acts as a platform for the magnetic and electrical elements. The electrical cross-point switch may also comprise a clamping element that serves to lock the switch in an open or closed position to circumvent the magnetic actuation of the switch. In another embodiment, the invention provides for a MEMS electrical cross-point switching array that includes a microelectronic substrate, a magnetic field source in circuit with said microelectronic substrate, a plurality of first and second electrical lines disposed on the microelectronic substrate in an array formation, and a plurality of the in-plane MEMS electrical cross-point switches as described above disposed at the cross point of a first and second electrical line. In one embodiment the array is configured in a N×N or N×M array having a series of crossing first and second electrical load lines. In another configuration the array has a series of first electrical load lines that extend radially from a central point of reference and a series of second electrical load lines that extend outward, in spoke-like fashion, from the central point of reference.
Abstract:
Improved microelectromechanical structures include spaced-apart supports on a microelectronic substrate and a beam that extends between the spaced-apart supports and that expands upon application of heat thereto to thereby cause displacement of the beam between the spaced-apart supports. A heater, located on the beam, applies heat to the beam and displaces with the beam as the beam displaces. Therefore, heat can be directly applied to the arched beam, thereby reducing thermal loss between the heater and the arched beam. Furthermore, an air gap between the heater and arched beam may not need to be heated, thereby allowing improved transient thermal response. Moreover, displacing the heater as the arched beam displaces may further reduce thermal loss and transient thermal response by reducing the separation between the heater and the arched beam as the arched beam displaces.
Abstract:
MEMS (Microelectromechanical System) structures are provided that are designed to rotate in response to thermal actuation or the like. In one embodiment, the MEMS rotary structure includes a hub having one or more radial spoke members that impose a rotational force upon the hub in response to applied changes in temperature. The MEMS rotary structure can also include a ring at least partially encircling the hub and connected to the hub by means of one or more hub spoke members. Controllable clockwise, counterclockwise, or both clockwise and counterclockwise rotation of the hub or ring are provided. The MEMS rotary structures can also include thermal arched beam actuators that are operably connected to the spoke member. As the temperature changes, the thermal arched beam actuators move the spoke members in order to rotate the MEMS structure. Various applications are provided for these rotating MEMS structures, including but not limited to rotary actuators, rotary switches and relays, variable capacitors, variable resistors, shutters, and valves.
Abstract:
Microelectromechanical system (MEMS) structures and arrays that provide movement in one, two, and/or three dimensions in response to selective thermal actuation. Significant amounts of scalable displacement are provided. In one embodiment, pairs of thermal arched beams are operably interconnected and thermally actuated to create structures and arrays capable of moving in a plane parallel to the underlying substrate in one and/or two dimensions. One embodiment provides an arched beam operably connected to a crossbeam such that the medial portion arches and alters its separation from the crossbeam when thermally actuated. In another embodiment, at least one thermal arched beam is arched in a nonparallel direction with respect to the plane defined by the underlying substrate. In response to thermal actuation, the medial portion of the arched beam is arched to a greater degree than the end portions of the thermal arched beam, thereby altering the separation of the medial portion from the underlying substrate. One embodiment combines first and second thermal arched beams having medial portions arched in opposed nonparallel directions with respect to the plane defined by the underlying substrate by even greater amounts. In response to thermal actuation, the medial portions thereof arch in opposite nonparallel directions with respect to the underlying substrate, thereby altering the separation of the medial portions from the underlying substrate. Hybrid thermally actuated structures are provided that combine arrays capable of moving in-plane and out of plane, such that motion in all three dimensions may be achieved in response to selective thermal actuation.
Abstract:
Nuclear magnetic resonance analysis of powdery or other randomly oriented solid samples is improved by slowly rotating the sample with a period exceeding the nuclear spin relaxation time of nuclei in the sample. As a result, a relatively large proportion of the crystallites in the sample are brought into resonance, thereby improving the signal to noise ratio of the NMR reading. In addition, information about the width of the entire spectrum can be obtained from analysis of measurements of only a portion of it.
Abstract:
A scanner assembly comprising the following components. A scan module having a first surface and configured to receive an image oriented along the first surface. A carriage having a thickness no thicker than a thickness of the scan module perpendicular to the first surface, the carriage configured to receive the scan module and to move the scan module in a direction of travel. A v-bearing coupled to the carriage proximate to one end of the carriage and protruding from the carriage in a direction perpendicular to the first surface. A scan base having a groove and configured to receive the v-bearing. A belt drive configured to move the v-bearing in the groove of the scan base.
Abstract:
A micromechanical apparatus includes a microelectronic substrate and a tiltable body thereon. The tiltable body includes a plate configured to tilt about an axis parallel to the microelectronic substrate and a tilt stop engaging portion disposed axially adjacent the plate. A range of rotation of the plate about the axis is defined by contact of the tilt stop engaging portion with a tilt stop on the substrate. The microelectronic substrate may have an opening therein configured to receive the plate, and the tilt stop may include a surface of the microelectronic substrate adjacent the opening. An actuator, such as an electrostatic actuator, may tilt the tiltable body about the axis. Related operation and fabrication methods are also described.
Abstract:
Microelectromechanical structures (MEMS) are provided that are adapted to controllably move mirrors in response to selective thermal actuation. In one embodiment, the MEMS moveable mirror structure includes a thermally actuated microactuator adapted to controllably move along a predetermined path substantially parallel to the first major surface of an underlying microelectronic substrate. A mirror is adapted to move accordingly with the microactuator between a non-actuated and an actuated position. In all positions, the mirror has a mirrored surface disposed out of plane relative to the first major surface of the microelectronic substrate. The microactuator provided herein can include various thermal arched beam actuators, thermally actuated composite beam actuators, arrayed actuators, and combinations thereof. The MEMS moveable mirror structure can also include a mechanical latch and/or an electrostatic latch for controllably clamping the mirror in position. A MEMS moveable mirror array is also provided which permits individualized control of each individual MEMS moveable mirror structure within the array. The MEMS moveable mirror structures and the associated arrays can be used in a variety of applications including applications involving the controlled redirection of electromagnetic radiation. Accordingly, a method of redirecting electromagnetic radiation is provided. A method of fabricating MEMS moveable mirror structures is further provided.
Abstract:
A variable capacitor is provided having first and second capacitor plates, a tandem mover and an actuator. The first and second capacitor plates are positioned such that the first and second capacitor plates face one another in a spaced apart relationship. The tandem mover is configured to move the first and second capacitor plates in tandem in response to changes in ambient temperature to maintain a consistent spaced apart relationship between the capacitor plates. The actuator is then configured to vary the spaced apart relationship between the first and second capacitor plates in response to an external input. The capacitance of the variable capacitor can therefore be varied by increasing and decreasing the spaced apart relationship between the first and second capacitor plates.