Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components arc actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch such that the microactuator moves between a closed position in which the valve plate sealingly engages the valve opening and an open position in which the valve plate is at least partly disengaged from and does not seal the valve opening. The microactuator may further include metallization traces on distal portions of the arched beams to constrain the thermally actuated regions of arched beams to medial portions thereof. The valve may also include a latch for maintaining the valve plate in a desired position without requiring continuous energy input to the microactuator. An advantageous method for fabricating a MEMS valve having unitary structure single crystalline components is also provided.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A microactuator for precisely aligning an optical fiber with an optical device and an associated method of fabrication thereof. The microactuator includes a carrier positioned on a base for holding the optical fiber. An alignment frame positioned on the carrier remotely from the optical fiber is adapted to engage the base and the carrier. The carrier is movable relative to the base and the alignment frame. At least one actuator has a beam for engaging the alignment frame and a pad affixed to the carrier. The beam and pad move relative to each other when the actuator is actuated. The actuator is positioned on the carrier so that the beam engages and applies a force to the alignment frame in a predetermined direction when the actuator is actuated. This causes the pad to apply an opposite force to the carrier causing the carrier to move in a direction opposite the predetermined direction for controllably positioning the carrier relative to the base and precisely aligning the optical fiber with the optical device.
Abstract:
A MEMS thermal actuator device is provided that is capable of providing linear displacement in a plane generally parallel to the surface of a substrate. Additionally, the MEMS thermal actuator of the present invention may provide for a self-contained heating mechanism that allows for the thermal actuator to be actuated using lower power consumption and lower operating temperatures. The MEMS thermal actuator includes a microelectronic substrate having a first surface and at least one anchor structure affixed to the first surface. A composite beam extends from the anchor(s) and overlies the first surface of the substrate. The composite beam is adapted for thermal actuation, such that it will controllably deflect along a predetermined path that extends substantially parallel to the first surface of the microelectronic substrate. In one embodiment the composite beam comprises two or layers having materials that have correspondingly different thermal coefficients of expansion. As such, the layers will respond differently when thermal energy is supplied to the composite. An electrically conductive path may extend throughout the composite beam to effectuate thermal actuation. In one embodiment of the invention a two layer composite beam comprises a first layer of a semiconductor material and a second layer of a metallic material. The semiconductor material may be selectively doped during fabrication so as to create a self-contained heating mechanism within the composite beam. The invention also comprises a MEMS thermal actuator that includes two or more composite beams. The two or more composite beams may be disposed in an array or a ganged fashion, such that the multiple composite beams benefit from overall force multiplication and are therefore capable of greater and more linear displacement distances. The invention is also embodied in a method for fabricating the MEMS thermal actuators of the present invention.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate, a microactuator disposed on the substrate and formed of a single crystalline material, and at least one metallic structure disposed on the substrate adjacent the microactuator such that the metallic structure is on substantially the same plane as the microactuator and is actuated thereby. For example, the MEMS device may be a microrelay. As such, the microrelay may include a pair of metallic structures that are controllably brought into contact by selective actuation of the microactuator. While the MEMS device can include various microactuators, one embodiment of the microactuator is a thermally actuated microactuator which advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch. In an alternate embodiment, the microactuator is an electrostatic microactuator which includes a stationary stator and a movable shuttle. Imposing an electrical bias between the stator and the shuttle causes the shuttle to move with respect to the stator. Thus, on actuation, the microactuator moves between a first position in which the microactuator is spaced apart from the at least one metallic structure to a second position in which the microactuator operably engages the at least one metallic structure. Several advantageous methods for fabricating a MEMS device having both single crystal components and metallic components are also provided.
Abstract:
A tunable capacitor having low loss and a corresponding high Q is provided. The tunable capacitor includes first and second substrates having first and second capacitor plates disposed, respectively, thereon. The capacitor plates may include a high temperature superconductor material. A MEMS actuator, that is either driven by electrostatic force, heat or both, operably contacts the second substrate so that once the actuator is engaged it responds by displacing the second substrate, thereby varying the capacitance between said first capacitor plate and said second capacitor plate. As such, the capacitance can be controlled based upon the relative spacing between the first and second capacitor plates. The MEMS actuator may either be operably attached to the second substrate or detached, yet supporting, the second substrate.
Abstract:
A fiber optic connector is provided that is capable of precisely aligning an optical fiber with another optical element by using a MEMS positioning apparatus subsystem capable of being manufactured in an affordable, repeatable and reliable manner which can precisely microposition an optical fiber relative to another optical element in each of the X, Y and Z directions.
Abstract:
Microelectromechanical actuators include at least one arched beam which extends between spaced apart supports on a microelectronic substrate. The arched beams are arched in a predetermined direction and expand upon application of heat thereto. A coupler mechanically couples the plurality of arched beams between the spaced apart supports. Heat is applied to at least one of the arched beams to cause further arching as a result of thermal expansion thereof, and thereby cause displacement of the coupler along the predetermined direction. Internal heating of the arched beams by passing current through the arched beams may be used. External heating sources may also be used. The coupler may be attached to a capacitor plate to provide capacitive sensors such as flow sensors. The coupler may also be attached to a valve plate to provide microvalves. Compensating arched beams may be used to provide ambient temperature insensitivity.
Abstract:
Microelectromechanical actuators include a substrate, spaced apart supports on the substrate and a thermal arched beam that extends between the spaced apart supports and that further arches upon heating thereof, for movement along the substrate. One or more driven arched beams are coupled to the thermal arched beam. The end portions of the driven arched beams move relative to one another to change the arching of the driven arched beams in response to the further arching of the thermal arched beam, for movement of the driven arched beams. A driven arched beam also includes an actuated element at an intermediate portion thereof between the end portions, wherein a respective actuated element is mechanically coupled to the associated driven arched beam for movement therewith, and is mechanically decoupled from the remaining driven arched beams for movement independent thereof.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.