Abstract:
Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy. Provided herein are embodiments of an electrical conductivity sensor having an impedance sensor, where the impedance sensor can be configured to measure a low-frequency and a high-frequency impedance and a substrate, where the impedance sensor is coupled to the substrate. The substrate can be flexible. In embodiments, the impedance sensor can contain two or more electrical conductors. The electrical conductors can be in a bipolar configuration. The electrical conductors can be in a tetrapolar configuration. In embodiments, the electrical conductivity sensor can have two impedance sensors that can be coupled to the substrate such that they are orthogonal to each other.
Abstract:
A system and method for selectively treating aberrant cells such as cancer cells through administration of a train of electrical pulses is described. The pulse length and delay between successive pulses is optimized to produce effects on intracellular membrane potentials. Therapies based on the system and method produce two treatment zones: an ablation zone surrounding the electrodes within which aberrant cells are non-selectively killed and a selective treatment zone surrounding the ablation zone within which target cells are selectively killed through effects on intracellular membrane potentials. As a result, infiltrating tumor cells within a tumor margin can be effectively treated while sparing healthy tissue. The system and method are useful for treating various cancers in which solid tumors form and have a chance of recurrence from microscopic disease surrounding the tumor.
Abstract:
The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
Abstract:
A system and method for selectively treating aberrant cells such as cancer cells through administration of a train of electrical pulses is described. The pulse length and delay between successive pulses is optimized to produce effects on intracellular membrane potentials. Therapies based on the system and method produce two treatment zones: an ablation zone surrounding the electrodes within which aberrant cells are non-selectively killed and a selective treatment zone surrounding the ablation zone within which target cells are selectively killed through effects on intracellular membrane potentials. As a result, infiltrating tumor cells within a tumor margin can be effectively treated while sparing healthy tissue. The system and method are useful for treating various cancers in which solid tumors form and have a chance of recurrence from microscopic disease surrounding the tumor.
Abstract:
A method for treating a target tissue in a patient in need thereof is provided. The method includes the steps of identifying one or more characteristics of one or more cells of a target tissue; calculating a threshold electric field for inducing IRE in the target tissue based on the one or more characteristics; constructing a treatment protocol of one or more pulse parameters, wherein the treatment protocol is capable of inducing IRE in the target tissue; and delivering the treatment protocol to the target tissue. Systems for treatment planning for medical therapies involving administering electrical treatment energy are also provided.
Abstract:
Provided herein are devices, systems, and methods for monitoring lesion or treated area in a tissue during focal ablation or cell membrane disruption therapy.
Abstract:
The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
Abstract:
The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
Abstract:
Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
Abstract:
Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue, resulting in changes in passive electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time (˜10 s); this timeframe is much larger than pulse periods used with EBTs (˜1 s). Fourier Analysis SpecTroscopy (FAST) is introduced as a methodology for monitoring tissue inter-burst impedance (diagnostic FAST) and intra-burst impedance (therapeutic FAST) during EBTs. FAST is a rapid-capture (