Abstract:
A system comprising first interface circuitry that includes a first input pad of first receiver circuitry, and control circuitry configured to operate the first interface circuitry in a first mode to prevent the first receiver circuitry from receiving a first signal using the first input pad and a second mode to allow the first receiver circuitry to receive a second signal using the first input pad is provided.
Abstract:
In one implementation, the present invention includes a diode device to receive an incoming radio frequency (RF) signal to be amplified in a gain device of an amplifier and to provide a pre-distorted signal. Based on this pre-distorted signal, the gain device can output an amplified RF signal having substantial linearity to the incoming RF signal.
Abstract:
In one embodiment, the present invention includes multiple gain stages and an output network coupled to the gain stages. Each of the gain stages can be independently controlled to amplify a radio frequency (RF) signal to an output power level for transmission from a mobile wireless device. When controlled to be inactive, at least one of the gain stages can be placed into a low impedance state.
Abstract:
Embodiments are directed to capacitance compensation via a compensation device coupled to a gain device to compensate for a capacitance change occurring due to an input signal change, along with a controller coupled to the compensation device to receive the input signal and to control an amount of compensation based on the input signal. In some embodiments, banks may be formed of multiple compensation devices, where each of the banks has a different size and is coupled to receive a different set of bias voltages.
Abstract:
Embodiments are directed to capacitance compensation via a compensation device coupled to a gain device to compensate for a capacitance change occurring due to an input signal change, along with a controller coupled to the compensation device to receive the input signal and to control an amount of compensation based on the input signal. In some embodiments, banks may be formed of multiple compensation devices, where each of the banks has a different size and is coupled to receive a different set of bias voltages.
Abstract:
In one embodiment, the present invention includes an apparatus having at least two gain stages to receive incoming signals and to output amplified signals, along with multiple regulators. More specifically, a linear regulator can be coupled to the first gain stage to provide a first regulated voltage to the first gain stage, and a switching regulator coupled to the second gain stage to provide a second regulated voltage to the second gain stage.
Abstract:
In one embodiment, the present invention includes multiple gain stages to receive and amplify a differential input signal at different common mode voltages. The stages each may include a pair of linear NMOS gain transistors coupled to a primary coil of a given output transformer. One of the stages may include commonly coupled terminals coupled to a center tap of the primary coil of an output transformer of another stage, and a supply current provided to one of the stages is re-used for the other stage(s).
Abstract:
In one embodiment, the present invention includes multiple gain stages and an output network coupled to the gain stages. Each of the gain stages can be independently controlled to amplify a radio frequency (RF) signal to an output power level for transmission from a mobile wireless device. When controlled to be inactive, at least one of the gain stages can be placed into a low impedance state.
Abstract:
An apparatus includes a semiconductor package, a radio receiver and a processor. The radio receiver is located in the semiconductor package and includes at least one gain stage. The processor is located in the semiconductor package to execute stored instructions to control the gain stage(s).
Abstract:
An apparatus includes a first voltage reference circuit, a second voltage reference circuit and a third circuit that is coupled to the second voltage reference circuit. The first voltage reference circuit provides a first reference voltage between a terminal of the first voltage reference circuit and a first power line. The second voltage reference circuit provides a second reference voltage between a terminal of the second voltage reference circuit and a second power line that is separate from the first power line. The third circuit is coupled to the second voltage reference circuit to establish a magnitude of the second reference voltage in response to a potential difference between the terminal of the first voltage reference circuit and the second power line.