Abstract:
A cylinder recognition apparatus for a multi-cylinder internal combustion engine has a position sensor which generates for each cylinder output pulses which indicate prescribed positions of the piston of the cylinder. The output pulse for a prescribed reference cylinder of the engine has a different pulse width from the pulses for the other cylinders. A cylinder recognition circuit calculates a ratio which is a function of the pulse width and the period of each output pulse. A comparator compares the ratio with a prescribed value and a cylinder is recognized on the basis of the comparison.
Abstract:
The invention provides a magnetic object motion sensor which can operate with high accuracy not only when a magnetic object moves at high speeds but also even when it moves at low speeds, which can be produced with a greater production tolerance and a greater dimensional tolerance. The magnetic object motion sensor includes: magnetoelectric transducer elements disposed opposite protrusions of a moving magnetic object; a magnet for generating bias magnetic flux toward the magnetoelectric transducer elements; unbalanced bias producing means for producing imbalance in the magnetic field sensitivity between the magnetoelectric transducer elements; a differential amplifier for amplifying in a differential fashion the electric signals output by the magnetoelectric transducer elements; a waveform shaping circuit for converting the differential signal output by the differential amplifier to a pulse signal corresponding to the edges of the magnetic material protrusion; the unbalanced bias producing means producing a difference in the amplitude of the magnetic flux density between that applied to one element of the pair of magnetoelectric transducer elements and that applied to the other element so that the difference in the electric signal level corresponding to the difference in the amplitude of the magnetic flux density becomes greater than the hysteresis of the waveform shaping circuit, thereby, in effect, introducing imbalance in the sensitivity between the magnetoelectric transducer elements.
Abstract:
A combustion state detecting apparatus for an internal combustion engine is capable of ensuring a satisfactory ion current detection sensitivity and reliability by preventing discharge of bias voltage to an ignition coil to thereby protect the bias voltage against lowering. The apparatus includes an ignition coil for generating a firing voltage, spark plugs to which the firing high-voltage is applied via a high-voltage supply circuitry connected to an output terminal of the ignition coil, a biasing device connected to the high-voltage supply circuitry for applying a bias voltage to the spark plug, a bias voltage protection device inserted between the output terminal of the ignition coil and the biasing device, an ion current detecting device for detecting ions generated in succession to discharging of the spark plug upon application of the firing high-voltage as an ion current which flows through the spark plug under the bias voltage applied to the spark plug, and an electronic control unit for detecting combustion state on the basis of detected value of the ion current.
Abstract:
A combustion state detecting apparatus for an internal-combustion engine does not incur deteriorated ignition characteristics because the ionic current detecting circuit thereof is not affected by ignition current. The combustion state detecting apparatus is equipped with an ionic current detecting circuit (10A) which includes a biasing device (C) connected to the low voltage end of a secondary winding (2b) of an ignition coil (2) and which detects ionic current (i) flowing from the biasing device via a spark plug (4); rectifying device (5) which is inserted between the biasing device and the secondary winding so that the ionic current flows in the forward direction; a voltage clamping device (6) inserted between the secondary winding and the ground; and an ECU (20) which detects the combustion state according to the ionic current. The biasing device applies a bias voltage (VBi) of the opposite polarity from the high voltage for ignition to the spark; and the voltage clamping device limits a voltage (Vc) at the low voltage end of the secondary winding to a predetermined value when the high voltage for ignition appears, the absolute value of the predetermined value being set to the absolute value or more of the bias voltage.
Abstract:
The invention provides a high-accuracy and high-reliability magnetic sensor which can be produced with a high production yield at a low cost. The magnetic sensor includes: a main sensor unit including: an intermediate part in the form of a short rectangular prism serving as a fitting part; a seating formed on one end face of the intermediate part such that the seating has a step shape and such that the exterior circumferential surface of the seating serves as a fitting-in portion; a main part disposed at a right angle on the principal surface of the seating, the main part including: a sensor element disposed on the end of the main part; a permanent magnet disposed adjacent to the sensor element; and an electronic component; and a connector extending from the intermediate part; and a case including: a sleeve in the form of a cylinder with a closed end and an open end, the sleeve having a receiving portion formed on the open end, the sleeve having a sealed space serving as a space in which the main part is placed; and a holding part extending from the sleeve and including a receiving part and a separation stopper; wherein the magnetic sensor is characterized in that a liquid reservoir space is formed between the fitting-in portion and the receiving portion along the circumference, and the liquid reservoir space is filled with liquid packing.
Abstract:
A rotation sensor is provided which is inexpensive and has excellent performance, high workability, and high reliability. Specifically, the rotation sensor contains a magnetoelectric conversion device, a base, an insert conductor, a surface mount electrode part, an electronic component, and a connector part. The magnetoelectric conversion device senses a magnetic flux change associated with a rotation of a magnetic rotation body, and the base is made of resin and holds the magnetoelectric conversion device. The insert conductor is insert-molded in the base, and an exposed part of the insert conductor is exposed to a surface of the base. The surface mount electrode part is formed by at least the exposed part of the insert conductor and is connected to the magnetoelectric conversion device. The electronic component is mounted on the surface mount electrode part, and the connector part is formed by using an end of the insert conductor as a terminal electrode.
Abstract:
The invention provides a sensing device capable of outputting a correct signal precisely corresponding to a particular position (angle) of, for example a protruding or recessed portion of a rotating member made of a magnetic material. The sensing device includes: a magnet for generating magnetic field; a rotary member of magnetic material for changing a magnetic field generated by the magnet, the rotary member of magnetic material being disposed a predetermined distance apart from the magnet; and a giant magnetoresistance device for detecting the varying magnetic field, the operating range of the giant magnetoresistance device being set such that the change in resistance of the giant magnetoresistance device is uniform over the entire operating range in both directions of change in the magnetic field induced by the rotary member of magnetic material, wherein the giant magnetoresistance device is disposed in such a manner that the center of the magnetic field sensing plane of the giant magnetoresistance device deviates from the center of the magnet in a direction parallel to a plane containing the displacement direction of the rotary member of magnetic material.
Abstract:
A combustion state detecting apparatus for an internal-combustion engine permits an improved signal-to-noise ratio of a knocking signal with a resultant improved controllability without adding to the load on an electronic control unit (ECU). The combustion state detecting apparatus is equipped with: a knocking signal processing circuit 20 which generates a knocking signal (K) according to an ionic current detection signal (Ei); and an ECU (2A) which detects the combustion state at a spark plug according to the ionic current detection signal and the knocking signal.
Abstract:
Misfiring in an engine cylinder can be detected based on the pressure therein as sensed by a pressure sensor with a high degree of reliability at any time even if the output signal of the pressure sensor contains an offset component superposed on a pressure component representative of the actual cylinder pressure. In one form, the pressure sensor output is differentiated to eliminate the influence of the offset component and then processed to generate a power stroke pressure information signal in the form of the time of a pressure-change peak in the differentiated pressure sensor output or an integrated value of the differentiated output, which is then compared with a threshold so as to determine whether misfiring took place in the cylinder. In another form, the offset component is calculated based on the pressure in the cylinder at two different crank angles during a compression stroke, and it is then removed from the pressure sensor output and compared with a threshold or it may be integrated for a prescribed crank angle range around TDC before comparison with the threshold. In a further form, an expected pressure in the cylinder at a third crank angle during a power stroke is calculated based on the cylinder pressures at first and second crank angles during a compression stroke preceding the power stroke, and then compared with the cylinder pressure as sensed by the pressure sensor at the third crank angle for misfiring determination.
Abstract:
A control apparatus for a marine engine capable of effectively suppressing a great variation in the rotational speed of the engine due to a great variation in an intake air pressure particularly when the engine is trolling. In one form, an air/fuel ratio of a mixture supplied to the engine is made constant to maintain engine output power at a constant level. In another form, the intake air pressure, based on which the engine is controlled, is averaged in such a manner as to reduce a variation in the engine rotational speed by using a greater averaging coefficient during trolling than at other times. In a further form, if a variation in the intake air pressure is less than a predetermined value, the intake air pressure is used for controlling the engine, whereas if otherwise, another engine operating parameter such as an opening degree of a throttle valve is used instead of the intake air pressure.