Abstract:
Systems for displaying images. The system comprises a display panel comprising a plurality of data lines DL(x), a plurality of gate lines SL(y) perpendicular to the data lines DL(x), and a pixel array coupled to the data lines and the gate lines. The pixel array comprises a first pixel P(x+1, y) coupled to the gate line SL(y+1) and the data line DL(x+1), a second pixel P(x+1, y+1) coupled to the gate line SL(y+1) and the data line DL(x+2), a third pixel P(x, y+1) coupled to the gate line SL(y+2) and the data line DL(x+1), and a fourth pixel P(x, y+2) coupled to the gate line SL(y+2) and the data line DL(x).
Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling are described. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices. A Bragg grating may be implemented in such sensors to form reflective fiber sensors.
Abstract:
A soft zoom lens system includes an axially expandable or shrinkable holding portion, a supporting portion, a first lens and a second lens. This holding portion has an inner space, a first end and a second end. The supporting portion is made by a soft material. The first lens is disposed between the first end and the supporting portion. The second lens is disposed between the second end and the supporting portion. When this holding portion is applied by predetermined electricity, it will expand or to shrink axially. So, the curvatures of the first lens and the second lens will be changed. The zooming is performed. The invention's structure is simple. The adjusting of focal length is easy. The production is easy with low cost.
Abstract:
A shift register in an amorphous-silicon gate driver comprises a pull-up transistor and two pull-down modules. The pull-up transistor produces a positive pulse when the clock signal is high and the gate of the pull-up transistor is also high. The gate of the pull-up transistor is pulled down to a negative voltage level Vss by two pull-down transistors in the pull-down modules. Each pull-down module also has a further pull-down transistor to keep the output terminal at Vss after the output pulse is produced. The two pull-down modules are operated in a cooperative manner so that each pull-down transistor is conducting approximately 50% of the time. The gates of the pull-down transistors are kept at a positive voltage level approximately 50% of the time and at Vss′ approximately 50% of the time with Vss′ being more negative than Vss.
Abstract:
The invention provides a method to real time monitor the ion beam. Initially, turn on an ion implanter which has a wafer holder, a Faraday cup and a measurement device positioned close to a special portion of a pre-determined ion beam path of the ion beam, wherein the Faraday cup is positioned downstream the wafer holder and the measurement device is positioned upstream the wafer holder. Then, measure a first ion beam current received by the Faraday cup and a second ion beam current received by the measurement device. By continuously measuring the first and second ion beam current, the ion beam is real-time monitored even the Faraday cup is at least partially blocked during the period of moving the wafer holder across the ion beam. Accordingly, the on-going implantation process and the operation of the implanter can be adjusted.
Abstract:
An electronic device includes a host and an earphone. The host includes a application module, the earphone includes at least one speaker, and at least one vibrator. The host generates a first vibration signal according to an original audio signal from the application module, and sends the original audio signal and the first vibration signal to the earphone. The earphone generates a second vibration signal according to the original audio signal, sends the first vibration signal and the second vibration signal to the at least one vibrator, and sends the original audio signal to the at least one earphone speaker. The electronic device may also generate audio signals according to an original vibration signal from the application module.
Abstract:
The present invention relates to a projecting capacitive touch sensing device, display panel, and image display system. The projecting capacitive touch sensing comprises an array of a plurality of sensing units, each sensing unit including: a first electrode made of a sensing material, at least one second electrode made of a sensing material and being disposed around the peripheral of the first electrode, at least one first sensing axis electrically connected to the first electrode, and at least one second sensing axis electrically connected to the second electrodes. The first electrode is quadrangle, while the second electrodes are triangular-shaped. The first electrode and the plurality of second electrodes are arranged to form a rectangular, and a non-sensing area is defined between the first electrode and the second electrodes.
Abstract:
An integrated power control device and method are provided. In one embodiment, a device includes a body, a plurality of sockets for connection with a load, and a plurality of switch-controls each connected with corresponding one of the sockets and controlling power connecting to the load. The device further includes a microprocessor for the input, output, calculation and control of data and information flow, wherein the microprocessor issues commands to the switch-controls to execute switch on or off on the sockets, a timer, and a data storage unit for data storage so as to provide the microprocessor to access the data. A voltage-and-current detector detects voltage and current values and stores them into the data storage through the microprocessor. A voltage-current alerting unit receives the voltage values and current values and informs the microprocessor when the values exceed predetermined thresholds. Finally, a power computational unit calculates power consumption of the load.
Abstract:
The invention discloses a bias balancing circuit. The bias balancing circuit is used for balancing an output voltage outputted by an amplifier module. The amplifier module has a variable gain. The bias balancing circuit comprises a comparator and a voltage selector. The comparator is used for comparing the output voltage and a reference voltage, to generate a comparison signal. The voltage selector is used for generating a selected voltage according to the comparison signal. When the variable gain is changed to result in an offset from the output voltage to the reference voltage, the bias balancing circuit is capable of balancing the output voltage toward the reference voltage by the selected voltage.
Abstract:
A pixel array, a driving method thereof and a flat panel display using the same are provided. The pixel array includes a first, a second, a third, and a fourth scan lines. A plurality of pixels is disposed between the first and the second scan lines. A plurality of pixels is disposed between the third and the fourth scan lines. In a first frame period, a gate driving circuit sequentially provides a driving signal to the first, the second, the fourth and the third scan lines. In a second frame period, the gate driving circuit sequentially provides the driving signal to the second, the first, the third and the fourth scan lines.