Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling are described. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices. A Bragg grating may be implemented in such sensors to form reflective fiber sensors.
Abstract:
Waveguide sensors having a side-polished coupling port at the waveguide cladding to sense a material based on material-specific optical attenuation by evanescent coupling at the coupling port.
Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices.
Abstract:
Fiber sensors formed on side-polished fiber coupling ports based on evanescent coupling are described. Such sensors may be configured to measure various materials and may be used to form multi-phase sensing devices. A Bragg grating may be implemented in such sensors to form reflective fiber sensors.
Abstract:
Adjustable filters formed in fibers or waveguides based on evanescent coupling, where a coupling layer is formed between a waveguide overlay and a side-polished coupling port on the fiber or waveguide. A control mechanism may be provided to adjust a property of at least one of the waveguide overlay and the coupling layer to adjust the output of the filter.
Abstract:
Materials and Methods related to diagnosing a clinical condition in a subject, or determining the subject's predisposition to develop the clinical condition, using a multi-parameter system to measure a plurality of parameters and an algorithm to determine a disease score.
Abstract:
Techniques for coupling optical energy between a side-polished port of a fiber in one substrate and a coupling port of a waveguide in another substrate.
Abstract:
Fiber optical devices formed on substrates fabricated with grooves that operate based on evanescent optical coupling through a side-polished fiber surface in each fiber involved.
Abstract:
Techniques for constructing a solid-state lighting module that includes solid-state light emitters that emit light of different colors and are selected from separated groups of solid-state light emitters that emit light of two or more separated colors, wherein one or more solid-state light emitters are selected from each of the separated color groups of solid-state light emitters. The lighting module includes a programmable device that stores or remembers desirable optical intensities of the separated color groups of solid-state light emitters, and a control circuit that individually controls light intensity of each of the separated color groups of solid-state light emitters. The light control circuit is coupled to or in communication with the programmable device to receive the desirable optical intensities of the separated groups of solid-state light emitters and is operable to adjust the intensities of the separated color groups of solid-state light emitters based on the desirable intensities.
Abstract:
Techniques, devices and materials for light source devices that convert excitation light into different light via wavelength conversion materials. One example of a light source includes an excitation light source; a wavelength conversion material that absorbs light from the excitation light source and emits a longer wavelength light; and a layer of a transparent material that has plural optical structures in contact to or in close proximity to the wavelength conversion material to receive the emitted light from the wavelength conversion material and to modify the received light to produce output light with a desired spatial pattern associated with the plural optical structures.