Abstract:
An integrated circuit (IC) includes a serial-to-parallel converter configured to receive a serial input signal to provide one or more parallel output signals. The serial input signal is an M-level Pulse-Amplitude Modulated (PAM) signal, wherein M is a positive integer. The serial-to-parallel converter includes a data converter configured to receive the serial input signal and provide a data converter output signal. The data converter output signal represents information of the serial input signal with N1 bits, and N1 is a positive integer. An encoder is configured to encode the data converter output signal to provide encoder output signal with N2 bits, wherein N2 is a positive integer less than half of N1. One or more sub-deserializers are configured to receive the encoder output signal and generate the one or more parallel output signals.
Abstract:
In one example, a driver circuit includes a differential transistor pair configured to be biased by a current source and including a differential input and a differential output. The driver circuit further includes a resistor pair coupled between a node pair and the differential output, a transistor pair coupled between a voltage supply and the node pair, and a bridge transistor coupled between the node pair. The driver circuit further includes a pair of three-state circuit elements having a respective pair of input ports, a respective pair of control ports, and a respective pair of output ports. The pair of output ports is respectively coupled to the node pair. The pair of control ports is coupled to a common node comprising each gate of the transistor pair and a gate of the bridge transistor.
Abstract:
Embodiments herein describe correcting nonlinearity in a Digital-to-Time Converter (DTC) by relaxing a DTC linearity requirement, which results in the correction being co-adapted with a DTC gain calibration loop which can operate in parallel with a DTC integral nonlinearity (INL) correction loop. In one embodiment, the DTC gain calibration loop and the DTC INL correction loop are constrained when determining a nonlinearity correction code to improve the likelihood they converge. Once determined, the nonlinearity correction code can be combined with an digital code output by a time-to-digital converter (TDC) to generate a phase difference between a reference clock and a feedback clock.
Abstract:
A continuous time linear equalizer (CTLE) is disclosed. The CTLE may include a first cell configured to buffer and invert an input signal and generate a first intermediate signal, a second cell configured to buffer and invert the input signal and generate a second intermediate signal, and a first frequency section configured to selectively buffer and invert a first range of frequencies of the second intermediate signal. The first frequency section may include a first tunable resistor configured to provide a first resistance and a third cell coupled to the first tunable resistor configured to generate a third intermediate signal based on the first resistance.
Abstract:
In one example, a driver circuit includes a differential transistor pair configured to be biased by a current source and including a differential input and a differential output. The driver circuit further includes a resistor pair coupled between a node pair and the differential output, a transistor pair coupled between a voltage supply and the node pair, and a bridge transistor coupled between the node pair. The driver circuit further includes a pair of three-state circuit elements having a respective pair of input ports, a respective pair of control ports, and a respective pair of output ports. The pair of output ports is respectively coupled to the node pair. The pair of control ports is coupled to a common node comprising each gate of the transistor pair and a gate of the bridge transistor.