Abstract:
A non-aqueous electrolyte secondary battery has an electrode plate assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; a non-aqueous electrolyte including a lithium salt and a non-aqueous solvent; and a gas absorbing element that absorbs gas produced in the secondary battery, wetting of the gas absorbing element with the non-aqueous solvent is controlled.
Abstract:
In a non-aqueous electrolyte secondary battery having: an electrode plate assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; a non-aqueous electrolyte including a lithium salt and a non-aqueous solvent; and a gas absorbing element that absorbs gas produced in the secondary battery, wetting of the gas absorbing element with the non-aqueous solvent is controlled.
Abstract:
An active material for a rechargeable lithium battery and a rechargeable battery, the active material including an active material core; and a thin film graphite layer on the core.
Abstract:
A crystalline carbon material with controlled interlayer spacing and a method of manufacturing the crystalline carbon material are disclosed. The crystalline carbon material has peaks of a (002) plane at 2θ=23°±5.0° and 2θ=26.5°±1.0° when X-ray diffraction is measured using a CuKα ray. The peak height at 2θ=23°±5.0° is higher than the one at 2θ=26.5°±1.0°.
Abstract:
Disclosed are a positive active material composition for an electrochemical device, a positive electrode, and an electrochemical device including the same. The positive active material composition includes: a carbon-based additive including a hydroxyl group (—OH) and an enol group (—C═C—OH) on the surface, having a peak area ratio (OH/C═COH) of a hydroxyl group peak area and an enol group peak area of an infrared spectroscopy (FT-IR) spectrum ranging from about 0.5 to about 10, having a specific surface area of about 50 m2/g to about 3000 m2/g, and having an oxygen-containing heterogeneous element in a content of less than about 15 wt %; a positive active material; a conductive material; and a binder.
Abstract:
A non-aqueous electrolyte secondary battery comprising: a positive electrode plate including an outer jacket comprising a sheet-shaped positive electrode current collector and a positive electrode active material layer formed on an inner surface of the outer jacket except for a peripheral portion thereof; a negative electrode plate including an outer jacket comprising a sheet-shaped negative electrode current collector and a negative electrode active material layer formed on an inner surface of the outer jacket except for a peripheral portion thereof; a separator layer comprising a polymer electrolyte interposed between the positive electrode active material layer and the negative electrode active material layer, wherein the peripheral portion of the positive electrode current collector and the peripheral portion of the negative electrode current collector are bonded together, with an insulating material interposed therebetween.
Abstract:
A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte. The positive and negative electrodes are wound together with the separator. The negative electrode includes composite particles and a binder. Each of the composite particles includes: a negative electrode active material including an element capable of being alloyed with lithium; carbon nanofibers that are grown from a surface of the negative electrode active material; and a catalyst element for promoting the growth of the carbon nanofibers. The binder comprises a polymer having at least one selected from the group consisting of an acrylic acid unit, an acrylic acid salt unit, an acrylic acid ester unit, a mathacrylic acid unit, a methacrylic acid salt unit, and a mathacrylic acid ester unit.
Abstract:
A positive electrode for a rechargeable lithium battery includes a positive active material and activated carbon, wherein an average particle diameter of the activated carbon is about 100% to about 160% relative to 100% of an average particle diameter of the positive active material.
Abstract:
A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The active material includes a silicon-containing compound represented by the following Chemical Formula 1 where Si exists with a concentration gradient from the surface to the center of the negative active material: SiCx [Chemical Formula 1] where 1, 0.05≦x≦1.5.
Abstract:
A positive electrode for a rechargeable lithium battery capable of providing a high voltage and a high voltage rechargeable lithium battery including the same, wherein the positive electrode includes a positive active material and a capacitor-reactive carbonaceous material having a specific surface area at or between 10 m2/g and 100 m2/g.