摘要:
Methods and apparatus for implementing the Intel QuickPath Interconnect® (QPI) protocol over a PCIe interface. The upper layers of the QPI protocol are implemented over a physical layer of the PCIe interface via use of QPI data bit mappings onto corresponding PCIe x16, x8, and x4 lane configurations. A QPI link layer to PCIe physical layer interface is employed to abstract the QPI link, routing, and protocol layers from the underlying PCIe physical layer (and corresponding PCIe interface circuitry), enabling QPI protocol messages to be employed over PCIe hardware. Thus, QPI functionality, such as support for coherent memory transactions, may be implemented over PCIe interface circuitry.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
摘要:
A rendering cost estimation method is provided for generating a rendering cost estimate that that is sufficiently close to an actual rendering cost that would be incurred if computer-generated images were actually rendered from a computer-graphics model. A plurality of cost factors that affect the actual rendering cost are identified. Representative information, including rendering cost estimation parameters that adequately characterize the cost factors, is derived from the computer-graphics model. The estimation parameters are combined with rendering cost estimation relationships that express the affect of the cost factors on the rendering cost. A rendering cost estimate is generated based on the estimation parameters derived from the computer-graphics model and the estimation relationships.
摘要:
An apparatus and method are described for detecting and correcting data fetch errors within a processor core. For example, one embodiment of an instruction processing apparatus for detecting and recovering from data fetch errors comprises: at least one processor core having a plurality of instruction processing stages including a data fetch stage and a retirement stage; and error processing logic in communication with the processing stages to perform the operations of: detecting an error associated with data in response to a data fetch operation performed by the data fetch stage; and responsively performing one or more operations to ensure that the error does not corrupt an architectural state of the processor core within the retirement stage.
摘要:
A processor of an aspect includes at least one lower processing capability and lower power consumption physical compute element and at least one higher processing capability and higher power consumption physical compute element. Migration performance benefit evaluation logic is to evaluate a performance benefit of a migration of a workload from the at least one lower processing capability compute element to the at least one higher processing capability compute element, and to determine whether or not to allow the migration based on the evaluated performance benefit. Available energy and thermal budget evaluation logic is to evaluate available energy and thermal budgets and to determine to allow the migration if the migration fits within the available energy and thermal budgets. Workload migration logic is to perform the migration when allowed by both the migration performance benefit evaluation logic and the available energy and thermal budget evaluation logic.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
摘要:
According to one embodiment, a processor includes a plurality of processor cores for executing a plurality of threads, a shared storage communicatively coupled to the plurality of processor cores, a power control unit (PCU) communicatively coupled to the plurality of processors to determine, without any software (SW) intervention, if a thread being performed by a first processor core should be migrated to a second processor core, and a migration unit, in response to receiving an instruction from the PCU to migrate the thread, to store at least a portion of architectural state of the first processor core in the shared storage and to migrate the thread to the second processor core, without any SW intervention, such that the second processor core can continue executing the thread based on the architectural state from the shared storage without knowledge of the SW.
摘要:
A rendering cost estimation method is provided for generating a rendering cost estimate that that is sufficiently close to an actual rendering cost that would be incurred if computer-generated images were actually rendered from a computer-graphics model. A plurality of cost factors that affect the actual rendering cost are identified. Representative information, including rendering cost estimation parameters that adequately characterize the cost factors, is derived from the computer-graphics model. The estimation parameters are combined with rendering cost estimation relationships that express the affect of the cost factors on the rendering cost. A rendering cost estimate is generated based on the estimation parameters derived from the computer-graphics model and the estimation relationships.