Abstract:
A programmable memory built-in self-test circuit and a clock switching circuit thereof are provided. The memory built-in self-test circuit is able to provide more self-test functions preset by a user, simplify the redundant circuit in the prior art and reduce chip area and lower the cost by means of an instruction decoder and a built-in self-test controller. The present invention also provides some peripheral control circuits of a memory. The control circuits occupies less area and enables the memory to be tested more flexibly. The present invention further provides a clock switching circuit enabling a chip to be correctly tested under different clock speeds, which benefits to advance the testability and the analyzability of the memory embedded in a chip and thereby increase fault coverage.
Abstract:
A wrapper testing circuit of system-on-a-chip for electrical tests of at least a core circuit of an integrated circuit and a wrapper testing method thereof are provided. A controller outputs control signals and test signals and receives result signals executed by the core circuit. The wrapper testing circuit comprises a decoding logic and a plurality of wrapper boundary registers. The decoding logic has a signal decoding table which receives and decodes the control signals and then issues decoded signals according to the signal decoding table. The WBR shifts, updates and captures the test signals for the core circuit to execute and output the result signals according to the decoded signals. In comparison with prior art, the testing time is reduced.
Abstract:
The present invention provides a method and apparatus for a memory build-in self-diagnosis and repair with syndrome identification. It uses a fail-pattern identification and a syndrome-format structure to identify faulty rows, faulty columns and single faulty word in the memory during the testing process, then exports the syndrome information. Based on the syndrome information, a redundancy analysis algorithm is applied to allocate the spare memory elements repairing the faulty memory cells. It has a sequencer with enhanced fault syndrome identification, a build-in redundancy-analysis circuit with improved redundancy utilization, and an address reconfigurable circuit with reduced timing penalty during normal access. The invention reduces the occupation time and the required capture memory space in the automatic test equipment. It also increases the repair rate and reduces the required area overhead.
Abstract:
An instruction-based programmable memory built-in self test (P-MBIST) circuit and an address generator thereof are provided. The P-MBIST circuit generates control signals according to the decoding of compact test instructions provided by an external automatic test equipment (ATE). The address generator generates memory addresses according to the control signals. The control signals and the memory addresses are sent to an embedded memory to perform the MBIST. The algorithm-specific design of the P-MBIST circuit and the address generator enables them to support multiple test algorithms at full clock speed and occupy smaller chip area.
Abstract:
Provided is a measurement circuit for measuring a jitter of a clock signal. Delay elements delay the clock signal into delayed clock signal. Latches latch the delayed clock signals to indicate whether transition edges of the clock signal is within a window value which is corresponding to delays of the delay elements. Based on the latch result from the latches, a finite state machine generates control signals for controlling the delay elements. If the latch result indicates that the transition edges of the clock signal is not within the window value, the control signals adjust the delays of the delay elements and the window value. The jitter of the clock signal is measured based on the delays of the delay elements and the window value.
Abstract:
A controllable delay line includes an anti-jitter unit, a dependent current source, a first current mirror, a second current mirror, a regulation capacitor, a compensation capacitor and an output buffer unit. The anti-jitter unit receives a first bias voltage and produces a second bias voltage based on the first bias voltage. When the voltage source used in the controllable delay line has a variation, the second bias voltage varies therewith. The regulation capacitor is used for reducing the variation of the voltage difference between the voltage source and a node voltage of the first current source. The compensation capacitor is used for reducing the influence of a transition of the input signal of the output buffer unit on the node voltage, so as to lower the jitter amount of the output signal of the output buffer unit.
Abstract:
We propose an opposite-phase scheme for peak current reduction. The basic idea is to divide the clock buffers at each level of the clock tree into two sets: one half of the clock buffers operate at the same phase as the clock source, and the other half of the clock buffers operate at the opposite phase to the clock source. Consequently, our approach can effectively reduce the peak current of the clock tree. The method enables the opposite-phase scheme to combine with the electronic design automation (EDA) tools that are commonly used in modern industries.
Abstract:
A built-in jitter measurement circuit for a VCO (voltage-controlled oscillator) and a PLL (phase-locked loop) is disclosed. The circuit includes a divider for dividing frequency of a signal, a time to digital converter (TDC) for converting the period of the divided signal into digital values, a variance calculator for calculating variance of the period of the divided signal, a mean calculator for calculating mean value of the period of the divided signal, a encoder and counter for encoding and calculating the period of the divided signal, and a state controller as a controller for all other components. The circuit disclosed utilizes output clock of an opened-loop circuit to be measured and a divider for increasing jitter of the original signal. By measuring the bandwidth of a closed-loop circuit, accordingly, jitter of output clock of an opened-loop or an closed-loop circuit is measured by correlating the measured bandwidth and the jitter values from extrapolation.
Abstract:
Disclosed is a sample and hold circuit for detecting a parameter of a data signal, which includes: a first switching module, wherein the sample and hold circuit samples the data signal according to the turning on or off of the first switching module; at least one capacitor, coupled to the first switching module; a second switching module, coupled to the capacitor; a controllable reference voltage source, for providing a first reference voltage to charge/discharge the capacitor via the second switching module according to a control signal; a first comparator, coupled to the capacitor, for comparing a voltage drop on the capacitor and the first reference voltage to generate a first comparing result; and a control circuit, coupled to the controllable reference voltage source and the first comparator, for generating the control signal according to the comparing results.
Abstract:
A wrapper testing circuit of system-on-a-chip for electrical tests of at least a core circuit of an integrated circuit and a wrapper testing method thereof are provided. A controller outputs control signals and test signals and receives result signals executed by the core circuit. The wrapper testing circuit comprises a decoding logic and a plurality of wrapper boundary registers. The decoding logic has a signal decoding table which receives and decodes the control signals and then issues decoded signals according to the signal decoding table. The WBR shifts, updates and captures the test signals for the core circuit to execute and output the result signals according to the decoded signals. In comparison with prior art, the testing time is reduced.