摘要:
The purpose of the present invention is to obtain an electrode wiring structure for semiconductor devices that can suppress the occurrence of Al voids inside aluminum alloy wiring without regard to the orientation of such aluminum alloy wiring. An interlayer insulator film 11, a titanium layer 12, a titanium nitride layer 13 that serves as the barrier layer, an aluminum alloy wiring layer 15 and a protective film 18 are formed on top of the silicon substrate 10 to compose the electrode structure. In this case, a distortion relaxation layer 14, with a film thickness of approximately over 10 nm and which is an intermetallic compound that includes aluminum and titanium in its composition, is formed in between the titanium nitride layer 13 and the aluminum alloy wiring layer 15. Because of this distortion relaxation layer, for every wiring width of 1 .mu.m, the number of Al voids with widths of over 0.3 .mu.m is practically reduced to 0.
摘要:
A method for manufacturing a semiconductor device having on a silicon substrate semiconductor elements and aluminum (Al) alloy wiring leads as electrically connected thereto is disclosed. The method includes the steps of forming on the silicon substrate an Al alloy layer containing therein copper (Cu), and forming on the Al alloy layer a titanium nitride (TiN) film with enhanced chemical reactivity by using sputtering techniques while applying thereto a DC power of 5.5 W/cm2 or less. Fabrication of such reactivity-rich TiN film on the Al alloy layer results in a reaction layer of Al and Ti being subdivided into several spaced-apart segments. In this case, the reaction layer hardly serves as any diffusion path; thus, it becomes possible to prevent Cu as contained in the Al alloy layer from attempting to outdiffuse with the reaction layer being as its diffusion path. This makes it possible to suppress or minimize unwanted fabrication of AlN on or above the surface of an Al containing lead pattern, thereby enabling increase in electromigration (EM) lifetime of electrical interconnect leads used.
摘要翻译:公开了一种制造半导体器件的方法,该半导体器件具有硅衬底半导体元件和与其电连接的铝(Al)合金布线引线。 该方法包括以下步骤:在硅衬底上形成含有铜(Cu)的Al合金层,并且通过使用溅射技术在Al合金层上形成具有增强的化学反应性的氮化钛(TiN)膜,同时施加直流电力 为5.5W / cm 2以下。 在Al合金层上制备这种富含反应性的TiN膜导致Al和Ti的反应层被细分成几个间隔开的段。 在这种情况下,反应层几乎不作为任何扩散路径; 因此,可以防止Al合金层中所含的Cu作为其扩散路径而反向扩散。 这使得可以抑制或最小化在含铝的引线图案的表面上或上方的AlN的不希望的制造,从而能够增加使用的电互连引线的电迁移(EM)寿命。
摘要:
The object of the present invention is to provide an explosion-proof safety valve assemblage having a lead cap which allows some of the manufacturing man-hour in the process such as precision working and positioning to be deleted, since the lead cap is integrally formed with an explosion-proof safety valve and serves to provide a current circuit in a battery in place of a conventional one composed of lead plate or lead wire which requires such precision working and positioning operations, and to provide a closed secondary battery using the above mentioned safety valve assemblage. An explosion-proof safety valve assemblage for use in a closed secondary battery comprising an outer container, an electrode element, consisting of a positive electrode, negative electrode, and a separator, accommodated in said outer container, wherein said safety valve assemblage is sealingly secured to an open end portion of said outer container via an insulating gasket integrally with a closing cap, and it consists of an explosion-proof safety valve element, a coreless disc-shaped insulator, and a lead cap formed of a metal substrate and a metal foil laminated to the metal substrate, substantially the center of which is provided with an opening, and a closed secondary battery using the above mentioned safety valve assemblage.
摘要:
An MIS transistor fabricated in a manner that minimizes the occurrence of leak currents and that improves overall transistor performance by minimizing variation in location of the transistor source and drain during fabrication thereof. A gate electrode is first fabricated on a substrate. Next, a thermal oxide layer is formed on a side of the gate electrode. A masking process is then performed with the thermal oxide layer to form a source and a drain. A silicon oxide layer is then deposited over the gate electrode, the source and the drain. An etching process is performed on the silicon oxide to form a side wall oxide film over the thermal oxide layer on the side of the gate electrode and to expose surfaces of the gate electrode, the source and the drain. A metal film is then deposited over the gate electrode, the source and the drain and is heat treated to form a metal silicide film on the exposed surfaces of the gate electrode, the source and the drain. The side wall oxide film functions to disperse the metal silicide film as it is deposited to electrically separate the gate electrode, the source and the drain, thereby preventing a leakage current from occurring.
摘要:
A semiconductor device having a thin film resistor which comprises at least chromium, silicon and nitrogen, and formed on a substrate with having a special ratio of the chemical composition, the semiconductor device having a characteristic such that variations of the resistance value thereof due to temperature variations can be effectively suppressed.
摘要:
A non-volatile memory cell having a structure having improved integration and simplified electrode wiring structure. The programmable non-volatile memory cell of the present invention adopts a mono-layer gate scheme to simplify the electrode wiring structure and to eliminate a current leakage problem of an insulating film between electrodes. A side and bottom of a semiconductor region, which is disposed directly below a capacity electrode section with a gate insulating film interposed therebetween that compose a control electrode, are isolated from another semiconductor region and semiconductor substrate by insulating films. Thus, a high programming control voltage which is not limited by a junction yield voltage between the semiconductor regions and semiconductor substrate may be applied. Due to that, an area of the capacity electrode section of a floating electrode may be considerably reduced.
摘要:
A semiconductor device has a thin-film resistor trimmed by laser. The semiconductor device comprises a semiconductor substrate having an element region that covers at least part of the surface of the semiconductor substrate, a first insulation film disposed on the surface of the semiconductor substrate, and a second insulation film disposed on the surface of the semiconductor substrate through an opening of the first insulation film. The opening is formed by selectively removing at least part of the first insulation film at a location on the surface of the semiconductor substrate where the element region is not involved. The thin-film resistor is formed on the second insulation film.
摘要:
The object of the present invention is to provide a closed battery capable of rapidly releasing the internal pressure thereof and at the same time disconnecting the current to effectively prevent itself from temperature rising and explosion so that it may assure the safety and reliability thereof, when the internal pressure is elevated due to short circuit, overcharge, reverse charge, or the like in such a completely closed battery. The formation of a valve element 5 whose center is eccentric to the center of a metal substrate 1 produces a slit 3 having a large width portion around the circumference of a valve element 5. When the internal pressure of a battery is elevated, the valve element 5 is smoothly raised up together with a metal foil 2 from the bending fulcrum portion 4 to thereby cut a lead wire 6 or permit a braze portion 8 to detach from the lead wire 6, thus reliably disconnecting the current. Then, the metal foil is allowed to burst stably and accurately at a prescribed pressure to thereby form a valve opening portion 7 so that the internal gas of the battery can be discharged. Thus, the battery can previously be prevented from exploding.
摘要:
A safety valve element for battery use which ruptures at a stable pressure range so as to release the inner pressure of the battery is disclosed. The safety valve element for battery use comprises a metal substrate which is provided with a perforated opening and a metal foil laminated on the metal substrate so as to close the perforated opening. A battery which is provided with such a safety valve is also disclosed. A battery case provided with such a safety valve is also disclosed. The battery and the battery case lid is produced by forming the perforated opening in the metal substrate, pressure welding the metal foil to the metal substrate and molding the clad material into a form of the battery case lid.
摘要:
Clad material comprises a metal substrate which is provided with a multiplicity of perforated openings therein and a metal foil which is laminated on the metal substrate to close the perforated openings. To produce such a clad material, at least one surface of the metal substrate and corresponding one surface of the metal foil are respectively subjected to a dry etching and the metal substrate and the metal foil are laminated in such a manner that the etched surfaces face each other. Alternately, only one surface of the metal substrate is subjected to a dry etching and the metal substrate and the metal foil are laminated in such a manner that the etched surface of the metal substrate defines a laminating surface. It may be possible to provide a nickel plating on the metal substrate or the metal foil. The clad material can be effectively used for producing safety valve chips which rupture accurately at low pressures which fall in a stable pressure range on a mass production basis.