摘要:
The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity at low temperature and which produces a cured product having excellent mechanical strength, and also provides a cured product thereof, a fiber-reinforced composite material, a fiber-reinforced resin molding having excellent heat resistance, and a process for producing a fiber-reinforced resin molding with good productivity. A resin composition for a fiber-reinforced composite material contains, as essential components, an epoxy resin (A), an acid group-containing radical polymerizable monomer (B), a radical polymerization initiator (C), and an amine-based curing agent (D) for an epoxy resin, and has a viscosity of 500 mPa·s or less at 50° C. measured with an E-type viscometer. The composition is impregnated into reinforcing fibers and cured.
摘要:
Provided are a method for producing a phosphorus-containing phenolic compound in which reactivity is considerably excellent in the reaction between a phosphorus-containing compound and an aromatic nucleus of a phenol; in the case of using a polyhydric phenol or a phenolic resin as the phenol, a novel phosphorus-containing phenolic compound that serves as a curing agent for an epoxy resin and imparts excellent heat resistance to a cured product; a curable resin composition containing the novel phosphorus-containing phenolic compound; a cured product of the curable resin composition; a printed wiring board; and a semiconductor sealing material. An aromatic aldehyde (a1) having an alkoxy group as a substituent on an aromatic nucleus is allowed to react with an organic phosphorus compound (a2) intramolecularly having a P—H group or a P—OH group. The resultant reaction product is then allowed to react with a phenol (a3).
摘要:
The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity at low temperature and which produces a cured product having excellent mechanical strength, and also provides a cured product thereof, a fiber-reinforced composite material, a fiber-reinforced resin molding having excellent heat resistance, and a process for producing a fiber-reinforced resin molding with good productivity. A resin composition for a fiber-reinforced composite material contains, as essential components, an epoxy resin (A), an acid group-containing radical polymerizable monomer (B), a radical polymerization initiator (C), and an amine-based curing agent (D) for an epoxy resin, and has a viscosity of 500 mPa·s or less at 50° C. measured with an E-type viscometer. The composition is impregnated into reinforcing fibers and cured.
摘要:
The object of the present invention is to provide an epoxy resin composition capable of realizing low dielectric constant and low dielectric dissipation factor, which is suited for use as a latest current high-frequency type electronic component-related material, without deteriorating heat resistance during the curing reaction. A phenol resin, which has the respective structural units of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P) derived from phenols, an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) derived from methoxynaphthalene and a divalent hydrocarbon group (X) such as methylene and also has a structure represented by —P—B—X— wherein P, B and X are structural sites of these groups in a molecular structure, is used as a curing agent for the epoxy resin, or a phenol resin as an epoxy resin material.
摘要:
The object of the present invention is to provide an epoxy resin composition capable of realizing low dielectric constant and low dielectric dissipation factor, which is suited for use as a latest current high-frequency type electronic component-related material, without deteriorating heat resistance during the curing reaction. A phenol resin, which has the respective structural units of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P) derived from phenols, an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) derived from methoxynaphthalene and a divalent hydrocarbon group (X) such as methylene and also has a structure represented by —P—B—X— wherein P, B and X are structural sites of these groups in a molecular structure, is used as a curing agent for the epoxy resin, or a phenol resin as an epoxy resin material.
摘要:
A high degree of resistance to moisture and solder and high flame retardancy are realized without incorporating a halogen in view of environmental friendliness. A phenolic resin has structural moieties which are a naphthylmethyloxy group- or anthrylmethyloxy group-containing aromatic hydrocarbon group (ph1), a phenolic hydroxyl group-containing aromatic hydrocarbon group (ph2), and a divalent aralkyl group (X) represented by general formula (1) below: (where Ar represents a phenylene group or a biphenylene group and Rs each independently represent a hydrogen atom or a methyl group) and has a structure in which plural aromatic hydrocarbon groups selected from the group consisting of the naphthylmethyloxy group- or anthrylmethyloxy group-containing aromatic hydrocarbon group (ph1) and the phenolic hydroxyl group-containing aromatic hydrocarbon group (ph2) are bonded through the divalent aralkyl group (X). This phenolic resin is used as a curing agent for an epoxy resin.
摘要:
The object of the present invention is to provide an epoxy resin composition capable of realizing low dielectric constant and low dielectric dissipation factor, which is suited for use as a latest current high-frequency type electronic component-related material, without deteriorating heat resistance during the curing reaction. A phenol resin, which has the respective structural units of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P) derived from phenols, an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) derived from methoxynaphthalene and a divalent hydrocarbon group (X) such as methylene and also has a structure represented by -P-B-X- wherein P, B and X are structural sites of these groups in a molecular structure, is used as a curing agent for the epoxy resin, or a phenol resin as an epoxy resin material.
摘要:
The present invention provides a heat-curable resin composition having excellent fluidity and realizing moisture-resistance reliability suitable for recent electronic component-related materials and high flame retardancy in a halogen-free state for harmony with the environment, a cured product thereof, a semiconductor encapsulating material using the composition, and a phenol resin and epoxy resin which give these performances. The heat-curable resin composition includes, as essential components, an epoxy resin (A) and a phenol resin (B), the phenol resin (B) having a phenol resin structure having, as a basic skeleton, a structure in which a plurality of phenolic hydroxyl group-containing aromatic skeletons (ph) are bonded to each other through an alkylidene group or a methylene group having an aromatic hydrocarbon structure, and an aromatic nucleus of the phenol resin structure has a naphthylmethyl group or an anthrylmethyl group.
摘要:
The present invention provides a resin composition for a fiber-reinforced composite material, which has excellent fluidity and impregnation into a fiber base material and which produces a cured product having excellent heat resistance. A resin composition for a fiber-reinforced composite material contains, as essential components, a poly(glycidyloxyaryl) compound (A), a polymerizable monomer (B) which is an unsaturated carboxylic acid or an anhydride thereof and has a molecular weight of 160 or less, an aromatic vinyl compound or a (meth)acrylate (C), and a radical polymerization initiator (D), wherein an equivalent ratio [glycidyloxy group/acid group] of a glycidyloxy group in the component (A) to an acid group in the component (B) is 1/1 to 1/0.48, and a molar ratio [(B)/(C)] of the component (B) to the component (C) is in the range of 1/0.55 to 1/2.
摘要:
One or more one-dimensional array-shaped photoelectric conversion modules 302 are mounted on a board 301. A one-dimensional array-shaped light receiving/emitting element 303 is mounted in each of the one-dimensional array-shaped photoelectric conversion modules 302. Further, the one-dimensional array-shaped photoelectric conversion modules 302 are mechanically and optically connected to a flexible fiber sheet 306 through an optical connector 305. As parallel transmission paths 306 from the one-dimensional array-shaped photoelectric conversion modules 302 approach an end of a board 301, they are laminated with each other and connected to a two-dimensional array-shaped optical connector 307 at an end of the board. Further, a wavelength multiplexer/demultiplexer is connected to the optical connector.