Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A power-factor-improving circuit and method for an offline converter block the DC component and obtain the AC component of an input voltage of the offline converter. The AC component is superpositioned onto a DC bias signal to generate a dimming signal for the offline converter to adjust an output current of the offline converter. The offline converter has a high power factor due to the dimming signal with the AC component of the input voltage. In addition, the average of the dimming signal is determined by the DC bias signal, hence the output current can be precisely controlled according to the DC bias signal.
Abstract:
An independent bleeding integrated circuit device is provided to replace the bleeding resistor for an EMI filter capacitor, to establish a discharge path between the two terminals of the EMI filter capacitor when the EMI filter capacitor is disconnected from an AC power source, for discharging the EMI filter capacitor. When the EMI filter capacitor is connected with an AC power source, the discharge path is cut off to avoid power loss.
Abstract:
A method for brightness control, adapted to a light emitting device emitting a light of an output brightness, comprises: setting the output brightness to be an initial value, and controlling the light emitting device emitting the light accordingly; setting a target value, and controlling the output brightness changing from the initial value toward the target value with the brightness changing rate of the brightness zone corresponding to the initial value; controlling the output brightness changing toward the target value with the following brightness changing rate when the output brightness crossing one of the brightness thresholds and entering the following brightness zone, wherein the following brightness changing rate corresponds to the following brightness zone; stopping changing the output brightness when reaching the target value.
Abstract:
A power management unit, adapted to a wireless power supplying unit, for switching between input powers and providing a rated voltage or a variable flow current is provided. The power management unit includes a rectifying unit, a regulating unit, and a control unit. The rectifying unit converts AC power into DC power. The regulating unit is connected to the rectifying unit and generates a stable rated voltage or a variable flow current. The control unit is connected to the regulating unit and controls the input power driving the regulating unit. In addition, an apparatus and a method for a wireless power supplying unit are provided.
Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A floating gate driver uses a single-end level shifter to translate a set signal and a reset signal induced by a rising edge and a falling edge of a switch signal to a common output terminal to generate an output voltage for a bistable circuit to generate a level shifted switch signal. Under control of a well transient detect signal asserted by detecting noise in the output voltage, a masking circuit between the single-end level shifter and the bistable circuit masks noise in the output voltage. This configuration has lower area penalty and better noise immunity.
Abstract:
LED dimming control circuit and method compensate LED current or LED average current by LED characteristics to improve dimming efficiency and performance. LED characteristic related look-up tables are stored to provide compensation values, and input LED current setting information is compensated by the compensation values to generate corrected LED current setting information for determining LED brightness.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A LED driver integrated circuit has a voltage input pin, a voltage output pin, a capacitor pin, and a switching circuit connected to the capacitor pin and the voltage output pin. The capacitor pin and the voltage output pin are for a flying capacitor to be connected therebetween, and thus the switching circuit and the flying capacitor establish a charge pump to convert an input voltage received by the voltage input pin into an output voltage at the voltage output pin.