摘要:
A retardation film is manufactured by stretching a thermoplastic resin film while adjusting stretching ratio α [%], temperature β [° C.], and stretching speed γ [%/min] so that the following formulas (1) and (2) are satisfied when the thermoplastic resin film is stretched at the stretching ratio α [%], the temperature β [° C.], and the stretching speed γ [%/min], therefore, stretching unevenness can be prevented: Z>X (1) (X×100/k)×0.2
摘要:
According to the present invention, a cellulose acylate film having high thickness precision and no streaks can be formed by producing a film with a cellulose acylate resin by means of the polishing roller method, and a high-performance optical film, which is free from the retardation distribution, can be produced by subsequently stretching the cellulose acylate film thus obtained within a magnification range from 1 or more and 2.5 or less.
摘要:
This invention provides a process for producing an optical film, which, even when a film is produced by casting using a melt casting film forming method so that the central part in the widthwise direction is thick, can finally realize a flat film having an even thickness and good flatness and possessing excellent optical properties. The production process of an optical film can meet recent demands for reduced film thickness, increased film width, and improved film quality in protective films for liquid crystal polarizing plates. The production process of an optical film by a melt casting film forming method is characterized in that, in an MD stretching step, an unstretched film after nipping is stretched in a transfer direction (MD direction) of the same film by a factor of not less than 1.1 and not more than 3.0, and, in an extruding step, the following relationship is satisfied: 10 μm≦T1−T2≦200 μm wherein T1 represents the film thickness at the central part in the widthwise direction of an extruded web, μm; and T2 represents the film thickness at both ends in the widthwise direction of the extruded web, μm.
摘要:
A retardation film is manufactured by stretching a thermoplastic resin film while adjusting stretching ratio α [%], temperature β [° C.], and stretching speed γ [%/min] so that the following formulas (1) and (2) are satisfied when the thermoplastic resin film is stretched at the stretching ratio α [%], the temperature β [° C.], and the stretching speed γ [%/min], therefore, stretching unevenness can be prevented: Z>X (1) (X×100/k)×0.2
摘要:
The invention relates to a screen changer in a system that processes flowable plastic, with an element that is movable between two positions, wherein the movable element is movable by a hydraulic cylinder, and with a motor that operates one of the hydraulic pumps, wherein a hydraulic supply line runs from the hydraulic pump to the hydraulic cylinder, wherein a first hydraulic pump is called the volume pump and a second is called the high-pressure pump, wherein the high-pressure pump has a lower volume capacity relative to the volume pump, but builds up a relatively higher pump pressure, with a non-return valve in the supply line, which optionally enables or interrupts the hydraulic connection between the volume pump and the hydraulic cylinder, and a high-pressure line, which pumps the hydraulic fluid from the high-pressure pump past the non-return valve to the hydraulic cylinder.
摘要:
A process for treating the working surfaces of equipment used in the production and processing of polycarbonate is disclosed. The thermal treatment in an oxidative atmosphere results in resin and molded articles having improved optical quality.
摘要:
The invention relates to a device (1) for providing a melt, in particular a plastic melt. Said device (1) comprises a feed unit (2) for material components, at least one purification unit (4) for the flowing melt, in particular a rotatable screening disc (5), and at least one sensor unit (17; 18; 19; 20; 21) for detecting one or more process parameters. The operation of the purification unit (4) can be influenced with the aid of said sensor unit, based on the filter-specific process data. The inventive device is configured in such a way that at least the type and dosage of the process materials that are supplied via the feed unit (2) and/or the processing parameters of said process materials can be controlled using the detected (17; 18; 19; 20; 21) process parameters and/or the filter-specific process data.
摘要:
A method for producing an environment protective foamed thermoplastic resin polymer uses an extruder installed inside with a helical rod driven to rotate. The extruder has its interior formed with a feeding section, a melting section, a mixing section and a heating-shaping section. The method includes a plurality of steps, in which thermoplastic resin is heated, melted in the melting section and moved into the mixing section, and hollow expansion balls are fed into the extruder to be evenly mixed with the melted thermoplastic resin. Then the hollow expansion balls are slightly heated and inflated, and after moved into the heating-shaping section, the balls are heated at foaming temperature, foamed and inflated. After injected through a nozzle, the melted thermoplastic resin and the hollow balls together become a foamed thermoplastic resin polymer with a preset thickness and shape.
摘要:
A cellulose acylate film produced by a melt-casting film formation, wherein the total of the number of projections having a height of from 0.1 μm to 100 μm and a length of at least 1 mm and the number of depressions having a depth of from 0.1 μm to 100 μm and a length of at least 1 mm is at most 10 per 10 cm of the width of the film. When built in a liquid-crystal display device, the cellulose acylate film significantly reduces the display blur in the device.
摘要:
The invention relates to a system for delivering elastomeric media, the system consisting of a gear pump (1) and a screw-type extruder (10) which, viewed in the delivery direction (6) of the pumping medium, is arranged in front of the gear pump (1) and which consists of a screw (11) and of a screw casing (12). According to the invention, the screw casing (12) has at least one conical part (15), and the screw (11) has at least one tapering in the area of the conical part (15). Furthermore, for the controlled feeding of energy into the pumping medium, the screw (11) is axially displaceable in the screw casing (12).