摘要:
A method of controlling a melting process in an electric arc furnace for melting a metallic material. By means of the present disclosure it is possible to minimize desired process properties such as the melting time or the total power consumption of the melting process. The method includes the steps of receiving or collecting measured data of at least one process variable, determining the current state of the process, performing an optimization of the melting process, determining a process input based on the result of the optimization, and controlling the melting process by means of the process input. A control system is also presented herein.
摘要:
Modern steel production processes require precise knowledge of the current composition and temperature of the liquid metal being processed. In particular during steel production in a converter, high match rates for final carbon content and bath temperature are required. Quantitatively precise blowing of oxygen corresponding to the final target carbon content, and the metal temperature, are decisive factors affecting the economic efficiency of the process and the quality of the steel produced. In order to allow relatively precise process monitoring, various processes and procedures are known, the application thereof being based on measuring exhaust gas composition and on mass flow balances. All models work at an exactness that depends on the precision of the input data, particularly with respect to the weight data of the raw materials and the chemical properties of the metal used. In order to allow control of the converter process for producing steel independently of the predefined process model, in particular when blowing oxygen, the invention proposes that detected values for the critical decoking point (t′crit) and for the end of O2-blowing (t′EoB) are obtained by means of a submodel operating as a process monitor based on the exhaust gas analysis and independent of the process model, by sensibly combining the constituent signals obtained, by means of which values the oxygen content predicted by the process model is corrected at the start of the process and matched to the actual conditions near the end of the decoking period.
摘要:
Modern steel production processes require precise knowledge of the current composition and temperature of the liquid metal being processed. In particular during steel production in a converter, high match rates for final carbon content and bath temperature are required. Quantitatively precise blowing of oxygen corresponding to the final target carbon content, and the metal temperature, are decisive factors affecting the economic efficiency of the process and the quality of the steel produced. In order to allow relatively precise process monitoring, various processes and procedures are known, the application thereof being based on measuring exhaust gas composition and on mass flow balances. All models work at an exactness that depends on the precision of the input data, particularly with respect to the weight data of the raw materials and the chemical properties of the metal used. In order to allow control of the converter process for producing steel independently of the predefined process model, in particular when blowing oxygen, the invention proposes that detected values for the critical decoking point (t′crit) and for the end of O2-blowing (t′EoB) are obtained by means of a submodel operating as a process monitor based on the exhaust gas analysis and independent of the process model, by sensibly combining the constituent signals obtained, by means of which values the oxygen content predicted by the process model is corrected at the start of the process and matched to the actual conditions near the end of the decoking period.
摘要:
A method for controlling a melt process in an arc furnace and signal processing component, program code, and data medium for performing said method are provided. According to the method, sound signals or vibrations from the interior of the furnace container are captured by solid-borne sound sensors, from which characteristic values can be derived for the distribution of melting material, melt, and slag in the furnace fill. A characteristic value SM for thermal radiation impinging on the furnace wall of the container, a characteristic value M for the lumpiness of the melting material in the volume of furnace fill, and a characteristic value MM for the change to the portion of solid melting material contacting the furnace wall are generated in priority sequence. The energy distribution at the electrodes is changed by a control system analyzing the characteristic values in priority sequence, such that thermal load peaks are dampened or even completely prevented. To this end, the strand impedances stored as target values are modified. If the control is not sufficient, the thermal power of the arc is reduced as a subordinate means. A rapidly and reliably effective operating regime for the processes in the arc furnace can thereby be implemented.
摘要:
Some implementations provide an integrated system that includes: a wastewater treatment system configured to process wastewater released by one or more furnaces at a steelmaking plant, and generates reused wastewater using the wastewater; a heat recovery apparatus configured to utilize exhaust gas from the one or more furnaces at the steelmaking plant, and heat the reused wastewater generated by the wastewater treatment system above a threshold temperature; and a generator configured to receive, through a water inlet, the reused wastewater heated above the threshold temperature; and an absorption system arranged in circulation with the generator, and wherein the reused water is supplied above a threshold amount such that the generator drives the absorption system and produces cooled air inside the steelmaking plant.
摘要:
A method of manufacturing a steel product into at least two different steelmaking units wherein an expected level of CO2 emissions for the manufacturing of said product in each respective steelmaking unit is calculated.
摘要:
A converter slagging monitoring method and device. The method comprises: acquiring converter smelting data containing converter noise data and oxygen lance vibration data in real time; based on a pre-established slagging monitoring model, calculating the thickness of slags in a converter molten bath by virtue of the acquired converter smelting data; comparing the calculated thickness of slags with a splashing threshold value and a drying threshold value which are contained in the slagging monitoring model, judging whether a comparison result characterizes the occurrence of splashing or drying, and when the comparison result characterizes the occurrence of splashing or drying, acquiring corresponding splashing information or drying information; and finally, according to the splashing information or drying information, making a corresponding splashing control scheme or drying control scheme to guide a subsequent slagging operation so as to achieve the smooth control of the lance position.
摘要:
A method for melting steel in an electric arc furnace (EAF). A hot heel is provided in the EAF. Metal scrap is loaded into the EAF. The metal scrap is melted in the EAF. The mass of the hot heel in relation to the mass of the metal scrap that is initially beyond the surface of the hot heel is a certain minimum. This minimum is 0.75 times the relation between the heat required to melt the metal scrap beyond the surface of the hot heel and the heat that can be taken from the hot heel without it being solidified when a theoretical heat balance calculation is applied as defined in a formula.
摘要:
Disclosed is a control system for a melting process in an electric arc furnace for melting a metallic material. By means of the present disclosure it is possible to minimize desired process properties such as the melting time or the total power consumption of the melting process. The system includes a processing unit adapted for receiving or collecting measured data of at least one process variable, determining the current state of the process, performing an optimization of the melting process, determining a process input based on the result of the optimization, and controlling the melting process by means of the process input. A method is also presented herein.
摘要:
The present invention is direct to a method/apparatus for verifying a nodularization process in a molten iron disposed within a ladle. The method includes the steps of: transferring the ladle with the molten iron to a nodularization area; adding an amount of magnesium to the molten iron in the ladle for producing the nodularization process in the molten iron; measuring vibration of the ladle containing the molten iron caused by the nodularization process in the molten iron; comparing the measured vibration with a predetermined level of vibration; and determining that the nodularization process occurs if the measured vibration is higher than the predetermined level of vibration.