Abstract:
The present invention relates to an eco-friendly and single step process for the preparation of high purity iron by using hydrogen plasma in a suitable smelting reactor furnace. Reduction of iron oxide in excess of 99% can be achieved by reducing the iron ore in hydrogen plasma smelting system. The product quality is greatly improved as there is no instance of coke inclusion which otherwise would have carried carbon, sulphur, phosphorous, silica, etc. with it. In addition, this greatly diminishes carbon dioxide emission thereby making the process highly eco-friendly in nature. Apart from these, the process produces water as the only by-product. The process takes care of the green house effect with the non-involvement of gases like carbon dioxide, carbon monoxide during the operation. Thus, the present process is developed to produce high pure iron in a hydrogen plasma reactor without using carbon as reductant which thereby reduces the carbon dioxide emission drastically.
Abstract:
Provided are a method and a refining device for producing molten steel of outstanding cleanliness, and more particularly provides a method and device for refining inclusions by forming droplets from molten steel and dropping same into slag during pre-processing in a continuous casting process in a steel-making process. Also, provided is a method for producing high cleanliness molten steel comprising a molten-steel supply device for supplying molten steel and a molten-steel refining device for containing and refining molten steel poured into the molten-steel supply device, wherein the method comprises: a molten-steel pouring step in which molten steel is poured from the molten-steel supply device into the molten-steel refining device; a droplet-forming step in which the molten steel which has been poured in is formed into droplets in the molten-steel refining device; a slag-pass-through step in which the molten steel which has been formed into droplets is dropped so as to pass through slag; and an inclusion-removing step in which residual inclusions in the molten steel, which has been formed into droplets, are removed while passing through the slag.
Abstract:
A gas pressure tank structure including: a tank wall, a compression oil cylinder, a locking ring, a spring cylinder, a locating pin mounting hole, a dowel pinhole, a refractory brick, a guide mechanism, a sealing structure, an arc joint, an arc shaped tank bottom, a steel ladle stand, a tank cover, and a reinforcing board.
Abstract:
The invention provides a maraging steel production method in which an oxide is added during an Mg oxide formation step, the production method including: the Mg oxide formation step in which Mg is added to molten steel and MgO is formed in the molten steel, during primary melting; a consumable electrode production step in which, after the Mg oxide formation step, the molten steel is solidified and a consumable electrode having residual MgO is obtained; and a vacuum arc re-melting step in which the consumable electrode is used and vacuum arc re-melting is performed.
Abstract:
Ultrasonic probes containing a plurality of gas delivery channels are disclosed, as well as ultrasonic probes containing recessed areas near the tip of the probe. Ultrasonic devices containing these probes, and methods for molten metal degassing using these ultrasonic devices, also are disclosed.
Abstract:
Ultrasonic probes containing a plurality of gas delivery channels are described, as well as ultrasonic probes containing recessed areas near the tip of the probe. These probes can be used in ultrasonic devices, and the ultrasonic devices can be used in molten metal processing operations to reduce the amount of dissolved gasses and impurities in molten metals.
Abstract:
Coatings comprising metallurgical slag are applied to refractory substrates having molten metal-contacting surfaces to create a chemically active and viscous surface that dramatically increases the ability of the treated substrate to remove slag, dross and other inclusions from a base metal alloy as it passes through or contacts the substrate. The refractory substrates include molten metal filters used by foundries and metal casters such as reticulated ceramic foam, cellular/honeycomb, silica mesh, and others that rely on their physical or sieving ability to remove particulate impurities from the base alloy being cast. The chemically active surfaces significantly increase filtration efficiency through a treatment process tailored to the specific chemistry of the alloy being filtered, such as ferrous metals that include iron, steel and more. Other refractory substrates such as aluminum oxide, magnesium oxide, zirconium oxide, aluminum silicate, silicon carbide (as common with reticulated ceramic foam filters) and the like may also include the coatings.
Abstract:
The present invention relates to an eco-friendly and single step process for the preparation of high purity iron by using hydrogen plasma in a suitable smelting reactor furnace. Reduction of iron oxide in excess of 99% can be achieved by reducing the iron ore in hydrogen plasma smelting system. The product quality is greatly improved as there is no instance of coke inclusion which otherwise would have carried carbon, sulphur, phosphorous, silica, etc. with it. In addition, this greatly diminishes carbon dioxide emission thereby making the process highly eco-friendly in nature. Apart from these, the process produces water as the only by-product. The process takes care of the green house effect with the non-involvement of gases like carbon dioxide, carbon monoxide during the operation. Thus, the present process is developed to produce high pure iron in a hydrogen plasma reactor without using carbon as reductant which thereby reduces the carbon dioxide emission drastically.
Abstract:
A method for melting steel in an electric arc furnace (EAF). A hot heel is provided in the EAF. Metal scrap is loaded into the EAF. The metal scrap is melted in the EAF. The mass of the hot heel in relation to the mass of the metal scrap that is initially beyond the surface of the hot heel is a certain minimum. This minimum is 0.75 times the relation between the heat required to melt the metal scrap beyond the surface of the hot heel and the heat that can be taken from the hot heel without it being solidified when a theoretical heat balance calculation is applied as defined in a formula.
Abstract:
Ultrasonic probes containing a plurality of gas delivery channels are disclosed, as well as ultrasonic probes containing recessed areas near the tip of the probe. Ultrasonic devices containing these probes, and methods for molten metal degassing using these ultrasonic devices, also are disclosed.