Abstract:
A control device predicts whether temporary reduction occurs to a charging efficiency of fresh air in an in-cylinder gas by an influence of an EGR rate of the in-cylinder gas, which increases later than increase of a charging efficiency of the in-cylinder gas, if a first arithmetic operation is applied to calculating a target throttle opening degree based on a target charging efficiency which is increasing, in a case of shifting to an acceleration operation, by using a prediction model expressing dynamic characteristics of an internal combustion engine. When it is predicted that temporary reduction occurs to the charging efficiency of the fresh air, the control device calculates the target throttle opening degree by a second arithmetic operation by which an increase speed of a throttle opening degree is restrained more than by the first arithmetic operation, instead of calculating the target throttle opening degree by the first arithmetic operation.
Abstract:
In a vehicle, a CPU of an ECU calculates a rotation speed of an engine based on an assumption that a clutch is in a connected state based on a speed of a vehicle detected by a vehicle speed sensor as a hypothetical engine rotation speed. Subsequently, the CPU acquires a target degree of opening of a throttle valve based on the calculated hypothetical engine rotation speed and a set target engine torque. Then, the CPU controls a throttle drive device such that an actual degree of opening of the throttle valve is the acquired degree of opening.
Abstract:
A control device for internal combustion engine mounted in a vehicle includes a throttle valve provided in an intake passage of the internal combustion engine and capable of changing a cross-sectional area of the intake passage, a variable valve capable of changing opening and closing timings of an intake valve of the internal combustion engine, basic target torque calculation means for calculating a basic target torque of the internal combustion engine according to an operating state of the internal combustion engine, vibration control target torque calculation means for calculating a vibration control target torque of the internal combustion engine to suppress vehicle vibration according to a vibration component of the vehicle, and cylinder intake air amount control means for controlling a cylinder intake air amount by controlling one of the throttle valve and the variable valve according to the vibration control target torque and controlling the other of the throttle valve and the variable valve according to the basic target torque.
Abstract:
A butterfly bypass valve includes a housing defining a bypass flow passage with a pivotable throttle plate therein. An outer edge of the throttle plate in a closed position is in sealing engagement with a sealing portion of the housing such that the throttle plate restricts fluid flow through the bypass flow passage. The throttle plate is pivotable to an open position to allow fluid flow through the bypass flow passage. A port in the housing allows a portion of fluid passing through the bypass flow passage to be removed when the throttle plate is pivoted to the open position. A predetermined amount of pivoting of the throttle plate toward the open position can occur so as to allow flow through the port, while maintaining the edge of the throttle plate in substantially sealing engagement with the sealing portion so as to substantially prevent flow through the bypass passage.
Abstract:
A wastegate control system and a method for the wastegate control system is disclosed. The wastegate control system includes an ambient pressure sensor, a throttle angle sensor, an ignition timing sensor, a knock sensor, an intake charge temperature sensor and an intake charge humidity sensor. A wastegate is controlled according to information received from these sensors.
Abstract:
A throttle device 1 includes a throttle valve 2 which is disposed in an intake passage 101, and includes a first valve body 20 and a first rotatable shaft 21 for rotatably holding the first valve body 20, a bypass valve 3 which is disposed in a bypass passage 8 connected to the intake passage 101 so as to bypass the throttle valve 2, and includes a second valve body 30 and a second rotatable shaft 31 for rotatably holding the second valve body 30, a common motor 4 for applying a driving force to the throttle valve 2 and the bypass valve 3, a first gear 5 configured to be able to transmit or block the driving force of the motor 4 with respect to the first rotatable shaft 21, a second gear 6 configured to receive the driving force of the motor 4 and transmit the driving force to the second rotatable shaft 31, and a sensor 7 for detecting a rotation amount of the second rotatable shaft 31 of the bypass valve 3 or another rotatable shaft rotating in conjunction with the second rotatable shaft 31.
Abstract:
An engine fuel supply apparatus includes: a fuel chamber provided in a carburetor; a first communication passage for opening the interior of the fuel chamber to the atmosphere; a second communication passage for communicating the interior of the fuel chamber with the interior of a Venturi section; and a passage switching section capable of switching between the first and second communication passages and mechanically connected to the main switch so that it can operate in response to the main switch shifting between an ignition position and a stop position. The passage switching section switches the second communication passage to the first communication passage in response to the main switch shifting from the stop position to the ignition position and switches the first communication passage to the second communication passage in response to the main switch shifting from the ignition position to the stop position.
Abstract:
An engine fuel supply apparatus includes: a fuel chamber provided in a carburetor; a first communication passage for opening the interior of the fuel chamber to the atmosphere; a second communication passage for communicating the interior of the fuel chamber with the interior of a Venturi section; and a passage switching section capable of switching between the first and second communication passages and mechanically connected to the main switch so that it can operate in response to the main switch shifting between an ignition position and a stop position. The passage switching section switches the second communication passage to the first communication passage in response to the main switch shifting from the stop position to the ignition position and switches the first communication passage to the second communication passage in response to the main switch shifting from the ignition position to the stop position.
Abstract:
In a vehicle, a CPU of an ECU calculates a rotation speed of an engine based on an assumption that a clutch is in a connected state based on a speed of a vehicle detected by a vehicle speed sensor as a hypothetical engine rotation speed. Subsequently, the CPU acquires a target degree of opening of a throttle valve based on the calculated hypothetical engine rotation speed and a set target engine torque. Then, the CPU controls a throttle drive device such that an actual degree of opening of the throttle valve is the acquired degree of opening.
Abstract:
A wastegate control system and a method for the wastegate control system is disclosed. The wastegate control system includes an ambient pressure sensor, a throttle angle sensor, an ignition timing sensor, a knock sensor, an intake charge temperature sensor and an intake charge humidity sensor. A wastegate is controlled according to information received from these sensors.