Abstract:
A fluid pressure increasing/decreasing machine can continuously supply an output pressure to a destination of supply by converting an input pressure from a source of supply. A control device selects at least one input pressure chamber and at least one output pressure chamber from among at least three pressure chambers in a fluid pressure cylinder or a plurality of fluid pressure cylinders operating inter-connectedly, the input pressure chamber being supplied with the input pressure, the output pressure chamber creating the output pressure including a pressure higher than the input pressure and a pressure lower than the input pressure. A flow control valve causes the selected input pressure chamber to communicate with the source of supply, and the selected output pressure chamber to communicate with the destination of supply. At least one of the pressure chambers is capable of being either of the input pressure chamber and the output pressure chamber.
Abstract:
The invention relates to a system for improving the energy efficiency in hydraulic systems, comprising an actuator (49) which, in an operating state, operates as a consumer of hydraulic energy and, in a different operating state, as a generator of hydraulic energy, and a hydraulic accumulator (1) which, when in an operating state of the actuator (49), can be charged by the same for storing energy and, when in a different operating state, can be discharged for delivering energy to the actuator (49). The invention is characterized in that at least one hydraulic accumulator in the form of an adjustable hydropneumatic piston accumulator (1) is provided, in which a are formed a plurality of pressure chambers (19, 21, 23, 25) which adjoin effective surfaces (11, 13, 15, 17) of different sizes on the fluid side of the accumulator piston (5), and an adjusting arrangement (51) is provided which connects a selected pressure chamber (19, 21, 23, 25) or a plurality of selected pressure chambers (19, 21, 23, 25) of the piston accumulator (1) to the actuator (49) as a function of the pressure level that prevails respectively on the gas side of the piston accumulator (1) and on the actuator (49).
Abstract:
A composite accumulator includes a base defining a first cavity and having a closed end, an open end, and a fluid port in communication with the first cavity for communicating a hydraulic fluid in or out of the first cavity, a cover disposed over the open end of the base, the cover defining a second cavity, an insert disposed within the second cavity, a piston disposed within the first cavity and the second cavity, the piston sealed to the insert and translatable along an axis, and a biasing member disposed axially between the piston and the insert, the biasing member configured to bias the piston towards the base. Both the base and the cover are a plastic and the insert is a metal.
Abstract:
The invention relates to a device for damping discharge pulsations in a medium being pumped through a system of pipes in a pulsating manner by a displacement pump that operates with a specific discharge characteristic, which device at least comprises a housing with an at least partially gas-filled damping chamber having a certain volume present therein, which housing can be connected to the system of pipes, in such a manner that an interface layer is present between the medium and the gas in the damping chamber during operation, which damping chamber has a desired gas pressure characteristic that partially depends on the discharge characteristic of the displacement pump, wherein the gas volume that is present in the damping chamber varies in time between a minimum compression volume and a maximum expansion volume under the influence of said discharge pulsations during operation, as well as adjusting means that supply gas to or discharge gas from the damping chamber The present invention provides a simpler and less complicated construction both for pulsation dampers provided with a separating element and for air boxes not provided with a separating element. In order to achieve an optimised damping of the discharge pulsations, the adjusting means are according to the invention arranged for determining the desired gas pressure characteristic in the damping chamber on the basis of the discharge characteristic of the displacement pump and determining the current gas pressure characteristic in the damping chamber, and comparing the current gas pressure characteristic as determined with the desired gas pressure characteristic of the damping chamber and determining the current position of the interface layer in the damping chamber on the basis of said comparison.
Abstract:
A hydraulic accumulator is equipped with a novel shut-off valve. The shut off-valve includes a valve body having a cylindrical hollow with a valve seat surrounding one end. The main piston including a piston head has a central opening and is slidably mounted within the cylindrical hollow of the valve body. A poppet valve has a valve head which mates with the valve seat and a valve stem which extends through the central opening of the piston to guide axial movement of the poppet valve relative to the piston. A spring is mounted between the valve head and the main piston head for urging the valve head away from the piston head. A control valve moves the piston relative to the valve body between open and closed positions responsive to signals from a computer which signals valve closing upon determination that flow rate through the valve exceeds a maximum period. The spring between the poppet valve head and the piston head exerts a force approximately equal to that of a pressure drop across the poppet valve at a predetermined maximum flow rate.
Abstract:
A hydraulic fluid reservoir comprises a body defining a variable volume chamber having one end portion movable with the level of fluid in the chamber. A biasing member acting on a traction rod extending from the movable end portion restrains movement thereof under fluid pressure. The fluid pressure in the variable volume chamber advantageously counterbalances the force of reaction in the biasing member.
Abstract:
A hydraulic accumulator is equipped with a novel shut-off valve. The shut off-valve includes a valve body having a cylindrical hollow with a valve seat surrounding one end. The main piston including a piston head has a central opening and is slidably mounted within the cylindrical hollow of the valve body. A poppet valve has a valve head which mates with the valve seat and a valve stem which extends through the central opening of the piston to guide axial movement of the poppet valve relative to the piston. A spring is mounted between the valve head and the main piston head for urging the valve head away from the piston head. A control valve moves the piston relative to the valve body between open and closed positions responsive to signals from a computer which signals valve closing upon determination that flow rate through the valve exceeds a maximum period. The spring between the poppet valve head and the piston head exerts a force approximately equal to that of a pressure drop across the poppet valve at a predetermined maximum flow rate.
Abstract:
A malfunction detection device of a bellows type accumulator for pressurized fluid includes malfunction judgment unit for judging a malfunction of the bellows type accumulator on the basis of a detection output of the pressure sensor. The malfunction judgment unit judges that the malfunction of the seal member generates when the difference between a peak pressure value appeared before a predetermined time is past after the starting of the pressure increase from a value below a predetermined value in the inlet and outlet port and a stable fluid pressure appeared after the appearance of the peak pressure value is not within a predetermined range and/or when the peak pressure value does not appear before the progress of the predetermined time.
Abstract:
A system for remotely controlling an undersea device. The system employs a gas-pressurized liquid reservoir that can be recharged from at least one replaceable gas bottle. A pressure-regulating valve is employed to control the pressure of the liquid leaving the reservoir. A number of one-shot units, each in the form of a squib-actuated valve coupled with a piston accumulator, are employed to create a hydraulic pilot for a hydraulic direction control valve. The control valve functions to direct pressurized liquid from the reservoir to a hydraulic actuator or other type of hydraulic device.
Abstract:
A bladder is disposed coaxially within a cylindrical container main body, a holder projecting into the bladder is provided on a top wall plate of the container main body, a sensor opposed to a bottom portion of the bladder and positioned within a moving locus region of the bottom portion or a deformable portion of the bladder is disposed at the bottom portion of the holder, and thereby, when the bladder deforms in response to variation of a liquid pressure the bottom portion of the bladder or the deformable portion of the bladder would actuate the sensor.