Abstract:
One embodiment of the present invention provides a system that characterizes a biological sample by analyzing light emissions from the biological sample in response to an excitation. The system first radiates the biological sample with a laser impulse to cause the biological sample to produce a responsive light emission. Next, the system uses a wavelength splitting device to split the responsive light emission into a set of spectral bands of different central wavelengths. The system applies temporal delays to the set of spectral bands so that each spectral band arrives at an optical detector at a different time, thereby allowing the optical detector to temporally resolve the responsive light emission for each spectral band separately. Next, the system captures the delayed spectral bands within a single detection window of the optical detector. The system then processes the captured spectral bands.
Abstract:
A new architecture for implementing a time-resolved Raman spectrometer is 2-3 orders of magnitude faster than current systems. In one embodiment, the invention employs a rotating optical switch to time multiplex an input signal through multiple band-pass filters and into a single optical detector which is electrically activated only when the filtered input light pulse is about to impact it.Time-multiplexing the input signal through multiple optical filters and time-sequencing the optical detector enables the device to detect and analyze 2-3 orders of magnitude faster than current designs. In one embodiment, the system may be employed for the diagnostics of a pathological condition of skin tissue in patients, such as malignant melanoma or other types of skin cancers and abnormal conditions.
Abstract:
Apparatus for registering the spectral signature of a dynamic source event include an imaging-sensor array configured to register electromagnetic energy over a predetermined range of electromagnetic wavelengths and an optical system configured for imaging onto the imaging-sensor array a dispersion pattern of electromagnetic energy emitted from a source event external to the optical system. The optical system includes (i) a focusing element and (ii) a selected set of optical dispersion apparatus. Among the optical dispersion apparatus are at least a first optically dispersive element that disperses a first selected set of wavelengths within the sensitivity range of the imaging-sensor array and at least a second optically dispersive element that disperses a second selected set of wavelengths within the sensitivity range of the imaging-sensor array such that wavelengths emitted from a source event that are within the first and second selected sets of wavelengths impinge simultaneously upon the imaging-sensor array along, respectively, a first extrapolated axis and a second extrapolated axis that is non-parallel to the first extrapolated axis.
Abstract:
Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
Abstract:
A high-speed absorption spectrographic system employs a slit-less spectroscope to obtain high-resolution, high-speed spectrographic data of combustion gases in an internal combustion engine allowing precise measurement of gas parameters including temperature and species concentration.
Abstract:
A new architecture for implementing a time-resolved Raman spectrometer is 2-3 orders of magnitude faster than current systems. The system additionally is compact, environmentally rugged, low cost and can detect multiple components of a sample simultaneously. In one embodiment, the invention employs a rotating optical switch to time multiplex an input signal through multiple bandpass filters and into a single optical detector which is electrically activated only when the filtered input light pulse is about to impact it.The combination of time-multiplexing the input signal through multiple optical filters and time-sequencing the optical detector enables the device to detect and analyze 2-3 orders of magnitude faster than current designs, processing spectra within milliseconds instead of seconds. The system can process multiple material samples (25+) simultaneously, instead of sequentially, and its mechanical ruggedness and simplicity enables using the system in harsh physical environments when traditional spectrometers can not be used reliably.
Abstract:
Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
Abstract:
A high-speed absorption spectrographic system employs a slit-less spectroscope to obtain high-resolution, high-speed spectrographic data of combustion gases in an internal combustion engine allowing precise measurement of gas parameters including temperature and species concentration.
Abstract:
System, method and apparatus wherein a probe employing non-imagining optics is utilized in conjunction with a fluorescing nanocrystal tracer at the body of a patient. Excitation components within the probe working end are utilized to excite the nanocrystals to fluoresce at wavelengths in the near infrared region, such fluorescent energy is homogenized by interacting with involved tissue to provide a uniform fluorescing intensity over the surface of a photo-detector. Initialization and background determination procedures are described along with a technique for determining statistically significant levels of fluorescing activity.
Abstract:
The invention is directed to an arrangement for an optical system for polarizalion-dependent, time-resolved optical spectroscopy, in particular a spectrometer that includes a polarization device which has a crystal polarizer and includes a light entry area which is arranged upstream of the polarization device and which is formed in such a way as to enclose a spatial acceptance angle of the crystal polarizer, and also that includes a light exit area which is arranged downstream of the polarization device, wherein an intermediate area which connects the light entry area and the light exit area is formed in the polarization device with a path length of at most approximately 4 mm which is traversed in the crystal polarizer by light impinging within the spatial acceptance angle. The invention also is directed to an optical measurement system comprising an arrangement, and also to a method for the polarization-dependent spectroscopic analysis of measurement light, in particular in time-resolved optical spectroscopy.