Abstract:
An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.
Abstract:
A method for calibrating a focus point for a camera lens may include capturing a reflection of a focus point measuring device that is affixed to the camera. The method may include evaluating a captured image of the reflection to measure a calibration amount for a focus point, and adjusting a focus point of a lens of the camera by the calibration amount. The focus point measuring device may include a substantially planar target surface defining a plane, and a ruled target surface inclined at substantially 45° to the substantially planar target and extending through the plane thereof, marked to indicate respective distances in front of and behind the plane. The device may further include a fixture for holding the substantially planar target surface and the ruled target surface in a defined orientation to the camera, enabling performance of the method.
Abstract:
Methods and devices are provided to obtain refractive correction with superior visual acuity (e.g., 20/10) by achieving an astigmatism-free customized refractive correction. The astigmatism-free customized refractive correction involves obtaining an objective and precise measurement of cylindrical power in a resolution between 0.01 D and 0.10 D in an eye using an objective aberrometer, reliably relating the cylindrical axis obtained from the objective aberrometer to that in a phoroptor, determining an optimized focus error of an eye through subjective refraction with a phoroptor, generating a customized refraction by combining the objective measured cylindrical power, the objective measured cylindrical axis, and the subjectively measured focus power, fabricating a custom lens with a tolerance finer than 0.09 D based on the generated customized refraction, and delivering an ophthalmic lens that can provide an astigmatism-free refractive correction for an eye.
Abstract:
A method of determining binocular performance of a pair of spectacle lenses comprises: a eyes characteristics providing step, a pair of spectacle lenses providing step, a environment providing step, a binocular performance criteria selecting step, and a binocular performance criteria determining step, wherein the at least one binocular performance criterion is selected among one or a combination of the following criteria groups consisting of central vision criteria group and/or peripheral vision criteria group.
Abstract:
This invention discloses a handheld apparatus for measuring surface power or radius of prescription ophthalmic spectacle lenses, optical lenses or molds blocked with or without chuck during Rx production, and after comparing measurement results with designed data, providing correction data to the processing machines via wireless connection for correction processing if needed. The handheld apparatus integrates an optical measurement head into a monolithic optical system.
Abstract:
Method of determining at least one refractive characteristic of an ophthalmic lens, includes: a) placing the lens on a support having at least one prop element contacting one of the main faces of the lens in a contact zone area smaller than that of the main faces; b) lighting the lens placed on its support with lighting elements; c) capturing an image of the prop element of the support lighted by light rays that have passed through the lens, the image being captured in an image capture plane substantially perpendicular to an optical axis of the lens; d) in the image, identifying the image of the prop element of the support and determining at least one characteristic representative of the geometry of the image of the prop element; and e) from the characteristic representative of the geometry of the image of the prop element, deducing the looked-for refractive characteristic.
Abstract:
A laser based lens analysis device comprising of a laser for emitting a laser beam, a beam expander for increasing the diameter of the laser beam, a beam collimator for collimating the increased diameter laser beam, an aperture for controlling the collimated laser beam and rendering the collimated laser beam to be substantially symmetrical, and a beam profiler for analyzing the laser beam characteristics after the controlled-symmetrical laser beam passes through the lens being tested. A method for lens analysis comprising the steps of emitting a laser beam, increasing the diameter of the laser beam, collimating the increased diameter laser beam, rendering the collimated laser beam substantially symmetrical, directing the symmetrical laser beam towards the lens being tested, and analyzing characteristics of the directed laser beam after the directed laser beam passes through the lens being tested.
Abstract:
Methods and devices are provided to obtain refractive correction with superior visual acuity (e.g., 20/10) by achieving an astigmatism-free customized refractive correction. The astigmatism-free customized refractive correction involves obtaining an objective and precise measurement of cylindrical power in a resolution between 0.01 D and 0.10 D in an eye using an objective aberrometer, reliably relating the cylindrical axis obtained from the objective aberrometer to that in a phoroptor, determining an optimized focus error of an eye through subjective refraction with a phoroptor, generating a customized refraction by combining the objective measured cylindrical power, the objective measured cylindrical axis, and the subjectively measured focus power, fabricating a custom lens with a tolerance finer than 0.09 D based on the generated customized refraction, and delivering an ophthalmic lens that can provide an astigmatism-free refractive correction for an eye.
Abstract:
A method for calibrating a focus point for a camera lens may include capturing a reflection of a focus point measuring device that is affixed to the camera. The method may include evaluating a captured image of the reflection to measure a calibration amount for a focus point, and adjusting a focus point of a lens of the camera by the calibration amount. The focus point measuring device may include a substantially planar target surface defining a plane, and a ruled target surface inclined at substantially 45° to the substantially planar target and extending through the plane thereof, marked to indicate respective distances in front of and behind the plane. The device may further include a fixture for holding the substantially planar target surface and the ruled target surface in a defined orientation to the camera, enabling performance of the method.
Abstract:
A system and method of determining a focal position for an objective positioned at a measurement location of a sample holder in a microscopy imaging system are provided. The objective is moved to a position relative to the sample holder that corresponds to a distance between the objective and the sample holder. The sample holder has a conditioned upper surface. A focusing light beam is projected onto the sample holder when the objective is located at the position, and the objective focuses the focusing light beam on the sample holder. A reflected light beam resulting from reflection of the focusing light beam off the conditioned upper surface is observed. The focal position for the objective is determined based on the reflected light beam such that the objective produces an in focus image of a microscopy sample when the objective is located at the focal position.