Abstract:
An apparatus comprises a first controller configured to control at least the flow rate of a polymerization inhibitor or acrylonitrile product to a first location where the two are mixed. The apparatus comprises a first on-line analyzer configured to measure polymerization inhibitor concentration in the acrylonitrile product at a second location, the second location downstream of the first location. The first on-line analyzer is configured to provide information relating to the measured inhibitor concentration at the second location to the first controller, the first controller configured process the information from the first on-line analyzer and to adjust at least a first operating parameter of a first addition device if the measured inhibitor concentration at the second location is outside a first predetermined condition. A second controller and a second on-line analyzer are provided to provide similar control of water addition to acrylonitrile product.
Abstract:
Various methods and systems are provided for monitoring and control of soil conditions. In one example, among others, a method includes obtaining aqueous samples from suction probes within a soil substrate and analyzing the aqueous samples to determine a chemical composition of the soil substrate. Amounts of an additive may be determined to adjust the chemical composition of the soil substrate. In another example, a method includes installing a suction probe within a soil substrate; drawing a vacuum to induce hydraulic conduction of aqueous solutions from the soil substrate; extracting an aqueous sample; and analyzing the aqueous sample to determine a chemical composition of the soil substrate. In another example, a method includes obtaining a composition of a fertilizer solution (FS) supplied to a soil substrate and a chemical composition within the soil substrate; determining nutrient utilization, and providing an amount of additive to produce a subsequent FS for supply.
Abstract:
The present invention provides apparatus and methods for adjusting the atmosphere within a substantially sealed chamber containing respiring produce. The chamber of the present invention includes inlet means to permit ambient atmosphere to enter the chamber, and outlet means to permit chamber atmosphere to exit the chamber. Methods using apparatus of the present invention comprise: (a) monitoring the oxygen concentration within the chamber; (b) following detection that the oxygen concentration in the chamber has fallen below a predetermined amount, opening the inlet means so that the amount of oxygen in the chamber increases; and (c) removing carbon dioxide from the chamber atmosphere substantially at a predetermined rate, the predetermined rate having been selected such that the carbon dioxide concentration within the chamber atmosphere does not substantially exceed a predetermined amount. The methods may also comprise opening the inlet means for a time that is approximately proportional to the difference between the detected oxygen concentration and an oxygen setpoint.
Abstract:
A method comprises transporting a first stream of a carrier gas to a delivery device that contains a solid precursor compound. The first stream of carrier gas is at a temperature greater than or equal to 20° C. The method further comprises transporting a second stream of the carrier gas to a point downstream of the delivery device. The first stream and the second stream are combined to form a third stream, such that the dewpoint of the vapor of the solid precursor compound in the third stream is lower than the ambient temperature. The flow direction of the first stream, the flow direction of the second stream and the flow direction of the third stream are unidirectional and are not opposed to each other.
Abstract:
A method and apparatus, for supplying high-pressure mixed gas of a low-vapor-pressure first gas as an active gas and a high-vapor-pressure second gas, are arranged to reduce an amount of the first gas discarded. The mixed gas in a high-pressure state is supplied from a mixing container to a use point. Upon reduction of pressure in the mixing container to a setpoint as a result of supply to the use point, a predetermined amount of the first gas is charged into a replenishment container connected to the mixing container by a replenishment line having a replenishment valve, and which is evacuated. As the second gas is charged into the replenishment container charged with the first gas, the replenishment valve is opened such that the first gas in the replenishment container is forced out by the second gas, thereby charging the mixing container with the mixed gas in the high-pressure condition.
Abstract:
The invention relates to a method of controlling a smoke generator. The smoke generator is adapted to be connected to a supply of a pressurized gas and a supply of a smoke liquid and further comprises a valve to regulate the pressure of the gas, a fluid driving means, a mixing unit for mixing the smoke liquid and the gas, and a heat exchanger heating the mixture of the pressurized gas and the smoke liquid to vaporize the smoke liquid and form a smoke upon ejection into surrounding air. The control method according to the invention then comprises the steps of receiving a smoke density parameter indicative of a desired amount of smoke to be generated by the smoke generator, measuring a gas pressure at a position between the valve and the heat exchanger, and using these parameters in controlling the valve.The invention further relates to a smoke generator arranged for performing the control method.
Abstract:
A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS), Self-Organizing Actuators (SOA), and Self-Organizing Actuation and Control Units (SOACU). The method and apparatus of SOA and SOACU for process control are presented. A control system as a case example for a gas mixing process is described using the unique SOA and SOACU approaches. A 2x1 Robust MFA (Model-Free Adaptive) controller as a key component of the SOACU is also disclosed.
Abstract:
A method and a device for providing a predeterminable concentration of at least one component in a microscopic sample liquid medium are described. The device includes a feeding device for the at least one component. Measurement data are determined, measuring a predeterminable parameter using a microscopic method. The concentration of the at least one component is adjusted or controlled via the feeding device based on the basis of measurement data.
Abstract:
In one embodiment, a method of controlling fluids in a semiconductor processing system includes mixing two or more chemical compounds in a blender to produce a solution and supplying the solution to a reclaim tank, where the solution is dispense to a process station. The solution can be monitored at a location between the tank and the process station to determine whether at least one of the chemical compounds is at a predetermined concentration. Upon determining that the at least one chemical compound in the solution is at the predetermined concentration the solution is flowed to the process station. The method further includes removing at least a portion of the solution from the process station and returning the removed portion of the solution to the reclaim tank. The removed portion of the solution is monitored at a location between the process station and the reclaim tank to determine whether at least one of the chemical compounds in the removed portion of the solution is at a predetermined concentration. Upon determining that the at least one chemical compound in the removed portion of the solution is at the predetermined concentration, the removed portion of solution is flowed to the process station.
Abstract:
An improved system and method for controlling ozone concentration in connection with a multi-chamber tool. The system and method involve a first and a second concentration controller in combination with an ozone generator. The first concentration controller detects an EVENT (i.e., one of the chambers in the multi-chamber tool coming on-line or off-line) and in response provides a power instruction to the ozone generator in accordance with a predictive control algorithm. The first concentration controller has a fast (i.e, about 1 second) response time. The second concentration controller is masked from the ozone generator during the EVENT, but otherwise controls the generator after an interval of time has lapsed after the EVENT. The second concentration controller has a slower response time than the first concentration controller, however the second concentration controller provides the system with long-term stability and can be used to provide updated data to the predictive control algorithm.