Abstract:
A transmitter for transmitting an RF control signal to a remote system includes a user input device, a memory and a transmitter circuit. The memory includes control data associated with the remote device. The control data includes a first frequency and a second frequency. The transmitter circuit is coupled to the user input device and memory. In response to a single user input, the transmitter circuit generates a rolling code signal, transmits the rolling code signal at the first frequency for a predetermined amount of time, and, upon expiration of the predetermined about of time, transmits the rolling code signal at the second frequency.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful transmission. At least one of the sequences of activation signals inserts a preset amount of time after each activation signal transmission. If user input is not received within the preset amount of time, the next activation signal in the sequence is transmitted.
Abstract:
A universal remote control establishes a new transmitter identifier when programmed to a particular rolling code scheme by an existing transmitter. During programming, the universal remote control receives at least one activation signal transmitted from the existing transmitter. The activation signal includes an existing transmitter identifier. The activation signal is examined to determine which of a plurality of rolling code schemes was used by the existing transmitter to generate the received activation signal. The new transmitter identifier, different from the existing transmitter identifier, is determined based on the rolling code scheme. Subsequently, when an activation input is received, the universal remote control generates and transmits a new activation signal including the new transmitter identifier.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful rolling code transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful fixed code transmission. In response to an activation input, an activation signal is generated and transmitted based on data stored following user indication of a successful transmission.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful rolling code transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful fixed code transmission. In response to an activation input, an activation signal is generated and transmitted based on data stored following user indication of a successful transmission.
Abstract:
A control system for remotely activating an automatically opening door according to the present invention includes a plurality of transmitters held by different people and each transmitter transmits control signals. The system further includes a plurality of doors at least some of which are mounted in different buildings. Each of the doors includes an actuator for automatically opening and closing the door and a receiver electrically coupled to the actuator for receiving control signals from the transmitters and activating the actuator to open the door in response to the receipt of the control signals. In this system, any one of the transmitters may be used to open any of the doors.
Abstract:
A system for monitoring and controlling an area comprising a controller for controlling system operational functions; at least one remote-control transmitter for transmitting system commands to the controller in a code word having a fixed word and a hopping word therein; the fixed word comprising at least one fixed data bit and the hopping word comprising at least one changing data bit, wherein the hopping word changes its binary value from transmission to transmission of the system commands; and, means for scrambling bits of the fixed word and bits of the hopping word within the code word.
Abstract:
A method of indicating the threat level of an incoming shock to an electronically secured vehicle and eliminating spurious signals developed from the interaction of EMF and RF energy fields with the shock sensor including the steps of sensing a shock delivered to the vehicle indicative of an attempted intrusion, generating an electric signal the strength of which is proportional to the intensity of the shock, analyzing the signal to determine if it is of a low, generally non-threatening intensity or a higher, generally security-threatening intensity, ignoring the first 5 milliseconds of the signal produced by the shock sensor, ignoring all signals that do not disappear and later reappear, and producing either a first pulse representing a low intensity signal, or separate first and second pulses representing a signal containing both low intensity and higher intensity components.
Abstract:
A circuit assembly comprising a sealed interface is configured to isolate one of more electrical components. The assembly comprises a circuit board comprising a substrate and a cover comprising a polycarbonate material in connection with the substrate. The assembly further comprises an adhesive seal disposed around a perimeter surface of the cover. The adhesive seal comprises a UV curable adhesive having a chemical composition. The assembly further comprises a polyamide over-molded coating enclosing at least a portion of the circuit board and covering the adhesive seal.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.