摘要:
A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
摘要:
A method of cleaning off organic deposition material accumulated on a mask includes forming an organic deposition material pattern on a substrate using the mask, which includes a plurality of slots, in a deposition chamber including a deposition source; transporting the mask to a stock chamber that is maintained at a vacuum and adjacent to the deposition chamber; and partially cleaning off the organic deposition material accumulated along the boundaries of the slots of the mask in the stock chamber. A system to clean off an organic deposition material accumulated on a mask having a plurality of slots, includes a deposition chamber including a deposition source; and a stock chamber that is maintained at substantially the same vacuum as the deposition chamber and includes a cleaning device that cleans off the organic deposition material accumulated on the mask.
摘要:
The present invention relates to a conductive composition, comprising: poly-(3,4-ethylenedioxythiophene): poly-(styrenesulfonic acid); and a surfactant; in which the surfactant has a concentration of 1 to 10% by weight based on the total weight of the composition, and the conductive composition does not comprise any metal component. The present invention also relates to a cathode catalyst layer prepared by said conductive composition, and a method for preparing a cathode catalyst layer with said conductive composition.
摘要:
Provided is a method for purifying an organic material having a 10% weight reduction temperature of 250° C. or more as measured by thermogravimetry at a vacuum degree of 1×10−2 Pa or less, which may sublime and purify the organic material having high heat resistance at high sublimation temperature with high purity and high yield in a short period of time, in which the organic material is subjected sublimation purification after a concentration of inorganic impurities in the organic material is adjusted to 5,000 ppm or less.
摘要:
A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.
摘要:
A method of forming an organic layer for an organic electronic device (e.g., an OLED) by using a liquid composition comprising a small molecule organic semiconductor material mixed in a solvent preparation in which the content of higher boiling impurities is reduced. The solvent preparation comprises a high boiling point solvent and 0.1 wt % or less of impurities having a higher boiling point than the solvent. The liquid composition is deposited on a surface by inkjet printing to form the organic layer. Also, provided are liquid compositions which can be used to make organic layers.
摘要:
There is provided an active layer containing a dopant material and a host material, wherein the host material has an HPLC purity of at least 99.9% and an impurity absorbance no greater than 0.01. There is also provided an electronic device containing the active layer.
摘要:
There is provided a film formation apparatus which is capable of forming an EL layer using an EL material with high purity. The EL material is purified by sublimation immediately before film formation in the film formation apparatus, to thereby remove oxygen, water, and another impurity, which are included in the EL material. Also, when film formation is performed using the EL material (high purity EL material) obtained by purifying with sublimation as an evaporation source, a high purity EL layer can be formed.
摘要:
Disclosed is a method for manufacturing an organic EL device which comprises a hole injection layer having a flat surface that is not contaminated. Specifically disclosed method for manufacturing an organic EL device, which comprises a step of forming an anode on a substrate; a step of forming a hole injection layer on the anode; a step of forming an inorganic film on the substrate and the hole injection layer; a step of forming a bank on the inorganic film in such a manner that at least a part of the inorganic film formed on the hole injection layer is exposed; a step of etching the exposed inorganic film by using the bank as a mask so that the hole injection layer is exposed therefrom; and a step of forming an organic light-emitting layer by applying an organic light-emitting material onto the exposed hole injection layer. The hole injection layer contains tungsten oxide or molybdenum oxide.
摘要:
Provided is a method of electrophoresis of carbon nanotube for separating them into metallic carbon nanotubes and semiconducting carbon nanotubes, and the method comprises a step of electrifying a carbon nanotube sealed gel in which carbon nanotubes are dispersed in a gel.According to the separation method, metallic CNT and semiconducting CNT may be efficiently and heavily separated and purified from each other in CNT containing both the two within a short period of time and in a simplified manner by the use of inexpensive facilities and according to a simple process, and the method can be readily scaled up, in which CNT can be separated industrially extremely advantageously.