Abstract:
A rotor includes a rotor core and permanent magnets. The rotor core includes annular bodies that are stacked in a stacking direction and each formed of core segments arranged along a circumferential direction. The number of the core segments in each of the annular bodies is set based on k, where k is the number of magnetic poles formed by the permanent magnets. The rotor core has n through-holes, where n≧k. The rotor further includes n fixing members each of which extends in the stacking direction through one corresponding through-hole of the rotor core. Between each circumferentially adjacent pair of the core segments, there is formed a gap that is greater than a clearance provided between the through-holes of the rotor core and the fixing members. At least one of the annular bodies is circumferentially offset from another annular body by an integer multiple of one magnetic pole.
Abstract:
The invention concerns a stator for an electric machine, comprising a plate stack comprising a plurality of superposed stator plates, the plate stack being delimited at the ends by cover plates and an insulating plate being disposed on at least one cover plate in the plate stack, the insulating plate interlocking with the adjacent cover plate.
Abstract:
An electric machine, especially a transversal flux machine, the stator being composed of a stack of phase segments, each phase segment having at least one stator segment and one stator winding, especially a single winding, each stator segment having an annular stator bridge, on which pole shoes are premolded, which in particular extend radially inward, and/or which extend in the direction of the rotor and/or which are situated between the rotor and the annular stator bridge, the pole shoes having the same shape, in particular, the axial width of the pole shoe decreasing with increasing radial clearance, the associated profile being disposed between a first and a second profile, the first profile being a linear function of the radial clearance, the pole back associated with the first profile being a planar area, in particular, the second profile being a circular function, in particular a circular segment function, the pole back associated with the second profile being a cylindrical section area, in particular.
Abstract:
A rotor comprises a first rotor lamination and a second rotor lamination. The first rotor lamination and the second rotor lamination are configured for defining, when joined into rotor assembly, a central axis of rotation and a plurality of interior magnet pockets disposed symmetrically about the central axis of rotation, each pocket of the plurality of interior magnet pockets is configured for housing and retaining a permanent magnet. A method of forming a rotor comprises forming a first rotor lamination and a second rotor lamination, rotating the second rotor lamination about an axis of symmetry of the second rotor lamination; and mating the first rotor lamination to the second rotor lamination such that a first notch of the first rotor lamination is disposed adjacent to the first notch of the second rotor lamination.
Abstract:
A three-phase rotating electrical machine includes a stator including a stator core provided with a plurality of teeth and a plurality of slots, and winding, the three-phase rotating electrical machine including a rotor including a rotor core and a north magnetic pole and a south magnetic pole, the three-phase rotating electrical machine including a fractional slot configuration, the rotor core including a north magnetic pole acting portion, a south magnetic pole acting portion, a magnetic pole boundary dividing the north magnetic pole acting portion and the south magnetic pole acting portion in the circumferential direction, and a magnetic resistance portion, the magnetic resistance portion restricting the magnetic flux from passing through.
Abstract:
A rotor or stator hub for an electric machine includes a plurality of magnets arranged in a predetermined same pattern on a plurality of uniformly sized carrier plates. A plurality of permanent magnets are uniformly mounted on each of the carrier plates proximate a first edge of the carrier plate and spaced away from a second edge of the carrier plate. The carrier plates may be mounted on a rotor or stator hub in a predetermined configuration to create a plurality of axial array groups.
Abstract:
A plurality of lamination steel sheets that form a rotor core are stacked so that the lamination steel sheets are angularly shifted from each other, and a plurality of cavities are formed. Permanent magnets are molded and disposed in the cavities by injection molding. Each permanent magnet has a uniform plate thickness, and is bent with respect to an axial direction so as to have a triangular wave shape or an S shape. The permanent magnets are magnetized after being disposed in the cavities. The paired magnet pieces have poles of the same polarity, which face each other in the circumferential direction of a rotor, and each of the magnet pieces is magnetized in directions of normals to a surface of the magnet piece, the surface having a linear sectional shape.
Abstract:
A rotor of a motor includes a first rotor that includes a first rotor core and a plurality of first magnets that are coupled to an outer circumferential surface of the first rotor core, a second rotor that includes a second rotor core and a plurality of second magnets that are coupled to an outer circumferential surface of the second rotor core, and a third rotor that is stacked between the first rotor and the second rotor and includes a third rotor core and a plurality of third magnets that are coupled to an outer circumferential surface of the third rotor core, wherein magnetic fluxes of the plurality of third magnets are less than magnetic fluxes of the plurality of first magnets or second magnets.
Abstract:
According to one embodiment, a transverse flux machine includes a stator and a rotor. The stator includes a winding and a first ferromagnetic unit. The winding is wound along a rotational direction of a rotation axis. The first ferromagnetic unit has L (L is integral number) magnetic poles holding the winding. The rotor is rotatable relatively to the stator around the rotation axis. The rotor includes a second ferromagnetic unit having L magnetic poles facing the first ferromagnetic unit. If an order of harmonic component of torque ripple to be reduced is (N×1), (N×2), . . . , (N×(M−1)) (M and N are integral numbers. ML), among L magnetic poles in the first and second ferromagnetic units, a relative position of M magnetic poles along the rotational direction is shifted by θ1 ((180°/N/M)θ1(540°/N/M)) in order.
Abstract translation:根据一个实施例,横向磁通机包括定子和转子。 定子包括绕组和第一铁磁单元。 沿着旋转轴线的旋转方向卷绕绕组。 第一铁磁单元具有保持绕组的L(L是整数)磁极。 转子可绕旋转轴线相对于定子旋转。 转子包括具有面对第一铁磁单元的L个磁极的第二铁磁单元。 如果要减小转矩波动的谐波分量的次序是(N×1),(N×2)。 。 。 ,(N×(M-1))(M和N是积分数ML),在第一和第二铁磁单元的L个磁极中,M个磁极沿旋转方向的相对位置偏移θ1( 180°/ N / M)θ1(540°/ N / M))。
Abstract:
A magnet 34 for the rotating shaft (first magnet, second magnet) is installed on the extended portion of the rotating shaft 33b in the gear housing 41, and Hall ICs 65a to 65c for the rotating shaft (first sensor, second sensor) are formed on the control board 60 inside the gear housing 41 so as to face the magnet 34 for the rotating shaft. The Hall ICs 65a to 65c for the rotating shaft are adapted to detect the rotation position of the rotating shaft 33b relative to the stator 32, that is, the rotation position of the rotor 33 relative to the stator 32, and the Hall ICs 65a to 65c for the rotating shaft are adapted to detect the rotation number of the rotating shaft 33b.