Abstract:
A method for operating a power generation system that supplies power for application to a load is disclosed. The method may generally include receiving, at a power converter, an alternating current power generated by a generator operating at a speed that is substantially equal to its synchronous speed and converting, with the power converter, the alternating current power to an output power, wherein the power converter includes at least one switching element. In addition, the method may include receiving a control command to control a switching frequency of the at least one switching element and adjusting the switching frequency to an adjusted switching frequency that is substantially equal to a fundamental frequency of the load.
Abstract:
Integrated AC regenerative motor drives and operating methods are presented in which a precharging circuit is provided with an IGBT, a diode and a parallel current limiting component in an intermediate DC circuit between a switching rectifier and an output inverter, and the drive is operated in one of three modes for motoring, regenerating and precharging.
Abstract:
A system has a DC bus circuit with first and second terminals, an intermediate node, first and second capacitors, first and second depletion mode FETs, and first and second switching control circuits, where the first depletion mode FET has a drain coupled to the first bus terminal, a source, and a gate coupled to the intermediate node, the second depletion mode FET has a drain coupled to the intermediate node, a source, and a gate coupled to the second bus terminal, the first switching control circuit turns the first depletion mode FET off responsive to a first capacitor voltage of the first bus capacitor being less than or equal to a second capacitor voltage of the second bus capacitor, and the second switching control circuit turns the second depletion mode FET off responsive to the first capacitor voltage being greater than or equal to the second capacitor voltage.
Abstract:
A system has a DC bus circuit with first and second terminals, an intermediate node, first and second capacitors, first and second depletion mode FETs, and first and second switching control circuits, where the first depletion mode FET has a drain coupled to the first bus terminal, a source, and a gate coupled to the intermediate node, the second depletion mode FET has a drain coupled to the intermediate node, a source, and a gate coupled to the second bus terminal, the first switching control circuit turns the first depletion mode FET off responsive to a first capacitor voltage of the first bus capacitor being less than or equal to a second capacitor voltage of the second bus capacitor, and the second switching control circuit turns the second depletion mode FET off responsive to the first capacitor voltage being greater than or equal to the second capacitor voltage.
Abstract:
In order to improve a method for selecting a frequency converter for a refrigerant compressor unit that includes a refrigerant compressor and an electric drive motor such that the frequency converter is selected in a manner for optimized use, it is proposed that a working state suitable for operation of the refrigerant compressor unit should be selected within an application field of an application graph of the refrigerant compressor, that an operating frequency for this selected working state should be selected, and that a working state operating current value that corresponds to the selected working state and the selected operating frequency should be determined from drive data, for operation of the refrigerant compressor unit.
Abstract:
A wind farm side voltage source converter comprises a DC terminal for connection to a DC transmission link, an AC terminal for connection to a wind farm that includes at least one wind turbine, and a main controller. The main controller is configured to modify an active power demand (Pdemand) of the voltage source converter which is received from a higher level controller by introducing an artificial inertia factor and/or in response to a measured DC voltage (Vdc_msr) at the DC terminal.
Abstract:
Integrated AC regenerative motor drives and operating methods are presented in which a precharging circuit is provided with an IGBT, a diode and a parallel current limiting component in an intermediate DC circuit between a switching rectifier and an output inverter, and the drive is operated in one of three modes for motoring, regenerating and precharging.