Abstract:
An X-ray emitter has a rotating anode rotatably mounted inside an X-ray tube by way of a multi-sliding surface bearing. The multi-sliding surface bearing has an inner and an outer sliding surface which are mounted so they can rotate relative to each other about an axis of rotation such that a gap is formed between the inner and outer sliding surfaces. A contour of the inner sliding surface, in a plane running perpendicular to the axis of rotation, is formed at least in certain sections by arc-shaped segments which are each centered around center points that are offset from each other.
Abstract:
An EUV light source serves for generating a usable output beam of EUV illumination light for a projection exposure apparatus for projection lithography. The light source has an EUV generation device which generates an EUV raw output beam. The latter is circularly polarized. For the purposes of setting the polarization of the usable output beam and in respect of the polarization direction, a polarization setting device has a linearly polarizing effect on the raw output beam. This results in an EUV light source, which provides an improved output beam for a resolution-optimized illumination.
Abstract:
An X-ray tube includes a cathode including an emitter emitting an electron beam, an anode at which a target material is disposed, the target material emitting an X-ray by colliding with the electron beam, and an insulating spacer isolating the anode, wherein the cathode or the anode is disposed between the emitter and the insulating spacer.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
A liquid metal bearing includes at least one first bearing part and at least one second bearing part that have a non-positive fit connection to one another. At least one first ductile sealing layer is disposed at least partly between at least a first bearing part of the at least one bearing and a second bearing part of the at least one second bearing part.
Abstract:
In order to provide an increased, i.e. faster, periodic modulation of X-ray intensity, an anode disk (28) for a rotating anode in an X-ray tube includes a circumferential target area (34) with a target surface area (36), a focal track center line (38), and a beam-dump surface area (40). The target surface area when hit by an electron beam generates X-rays. The beam-dump surface area when hit by an electron beam generates no useful X-rays Target portions and beam-dump portions are arranged alternatingly along the focal track center line. A focal spot is centered on the focal track center line. Structures on both sides of the focal track center line are arranged such that same radiation intensities are provided by the both sides when being hit by a homogenous electron beam.
Abstract:
An x-ray transmission device includes two surfaces in frictional contact within a low fluid pressure environment provided by a housing substantially opaque to x-rays. Materials of the two surfaces are selected such that the frictional contact generates relative charging between the surfaces. The housing includes a window substantially transparent to x-rays, and an electron target, for example a metal, is on an interior surface of the window. The electron target faces the surface that is relatively negatively charged, such that electrons accelerated from that surface, or accelerated due to the negative charge of that surface strike the electron target to generate x-rays, which may be transmitted through the window.
Abstract:
A cathode element for a microfocus x-ray tube includes a heatable filament formed of a wire for thermionic emission of electrons for generating an electron beam. The filament, in a source area of the electron beam, has an elongate extension in two directions perpendicular to the electron beam.
Abstract:
The present invention provides a transmission type X-ray tube and a reflection type X-ray tube. The transmission type X-ray tube comprises a target and a filter material. The target has at least one element which produces X-rays as being excited. The X-rays comprise characteristic Kα and Kβ emission energies of the element for producing images of an object impinged by the X-rays. The filter material through which the X-rays pass has a k-edge absorption energy that is higher than the Kα emission energies and is lower than the Kβ emission energies. The thickness of the filter material is at least 10 microns and less than 3 millimeters.
Abstract:
In an arrangement and method for active vibration compensation of an x-ray radiator, a counter-vibration generation unit is arranged within the x-ray radiator to reduce a vibration arising during operation of the x-ray radiator. The counter-vibration generating unit is engaged in an active connection with the x-ray radiator and generates a counter-vibration that is phase-shifted by 180 degrees relative to the operational vibration. Operational vibrations generated by the x-ray radiator can be directly reduced at the point of origin by the application of active counter-vibrations in the immediate proximity of the vibration generator. Additional vibration transmission to other system parts (for example a C-arm) is thereby reduced or prevented.