Abstract:
The present invention is related to a method and apparatus for performing a surface analysis of a sample by mass spectrometry. According to one aspect of the invention, the ions necessary for the spectrometry are produced by a probe beam, which is preferably an electron beam, in combination with a gas mixture comprising at least a reactive gas component. Due to the interaction of the probe beam with the reactive gas and the surface atoms, reactions take place between the surface atoms and the reactive gas molecules, resulting in volatile compounds being released from the surface. One or more laser beams cause the ionization of these compounds, after which the resulting ions are accelerated towards a mass spectrometer. The method and apparatus allow an accurate depth profiling of a test sample to be performed.
Abstract:
A reflection type ion attachment mass spectrometry apparatus is provided with a metal ion generation region, an attachment region and a mass spectrometry region. The metal ion generation region and the mass spectrometry region are formed as a common compartment and the attachment region is provided adjoining the common compartment. The attachment region has an electrostatic field generation unit for forming an electrostatic field in order to reflect the metal ions introduced from the metal ion generation region so as to guide them to the mass spectrometry region. Thereby, a trace ingredient can be detected with a high measurement sensitivity, the problems of disturbance of the mass spectrometer, deterioration of the metal ion emitter, the size of the apparatus, direct sampling, etc. are solved, and broad use in industry is possible.
Abstract:
An ionization apparatus for connection to a mass analyzer is provided. The ionization apparatus comprises a sample slide provided with at least two channels having inner surface having samples deposited thereon, means for delivering energy such as a laser to one of the channels to release and ionize the sample to form ions, and an interfacial orifice for collecting the ions formed in the channel.
Abstract:
The invention is provides a method and an apparatus for performing electrospray ionization mass spectrometric analysis, which method can exactly analyze a mass of a molecular ion or a fragment ion of an unstable organometallic complex or a polymeric organic compound. The method includes cooling a sample to be analyzed which contains a solvent and is caused to flow out from a spray small-diameter tube with an inert gas for low temperature vaporization (A), and carrying out ionization and mass spectrometric analysis of the sample to be analyzed while cooling a chamber (7) for removing a solvent or an ion source shield (8) with liquid nitrogen.
Abstract:
The present invention pertains to modified ion source targets suitable for use with liquid matrices (e.g., glycerol and lactic acid) in liquid matrix-assisted laser desorption/ionisation (MALDI) methods, as used, for example, in infrared (IR) liquid MALDI mass spectrometry (MS), preferably using time of flight (TOF) instruments. The modified targets comprise (a) a target plate (3) adapted for use in an ion source, said plate having an outward facing surface; and (b) a shielded sample cavity comprising: (i) a sample cavity (4) formed in said outward facing surface, said cavity having a sample cavity mouth and a sample cavity volume, and adapted to receive a liquid sample (5); and (ii) a perforated sample cavity shield (1), said shield covering said sample cavity mouth and having one or more exit holes through which ions formed inside the sample cavity may escape or be extracted. The present invention also pertains to ion sources, mass spectrometers, methods of MALDI and methods of mass spectrometry using such modified ion source targets.
Abstract:
A single or multiple layer curved Electrospray sample introduction means has been configured in an Atmospheric Pressure Ion (API) source interfaced to a mass analyzer. Sample solutions introduced through curved or bent sample introduction Electrospray (ES) probes configured in an API source are sprayed from the ES probe tip at an angle which differs from centerline of the ES probe body. Single or multiple curved ES probes can be configured in an Atmospheric Pressure Ion source interfaced to mass analyzers. Curved ES probes can also be configured in an API source which includes Atmospheric Pressure Chemical ionization.
Abstract:
A single or multiple layer curved Electrospray sample introduction means has been configured in an Atmospheric Pressure Ion (API) source interfaced to a mass analyzer. Sample solutions introduced through curved or bent sample introduction Electrospray (ES) probes configured in an API source are sprayed from the ES probe tip at an angle which differs from centerline of the ES probe body. Single or multiple curved ES probes can be configured in an Atmospheric Pressure Ion source interfaced to mass analyzers. Curved ES probes can also be configured in an API source which includes Atmospheric Pressure Chemical ionization.
Abstract:
A glow discharge source for the elemental analysis of solid samples of material by means of optical glow discharge spectroscopy (GD-OES) or glow discharge mass spectroscopy (GD-MS) or secondary neutral particle mass spectroscopy (SNMS), a glow discharge being produced by means of a connected electrical voltage source on the sample of material between the latter and an anode and evaluated spectrometrically, wherein a current transformer component for detecting the current flowing between the glow discharge and the voltage source is disposed at or in the anode or connected electrically with the anode.
Abstract:
An ion source (10) for producing a beam of ions from a plasma is disclosed. A plasma is created at the center of an annular anode (12) by collisions between energetic electrons and molecules of an ionisable gas. The electrons are sourced from a cathode filament (11) and are accelerated to the anode (12) by an applied electric potential. A magnetic field having an axis aligned with the axis of the anode acts to concentrate the flow of electrons to the center of the anode (12). The ionisable gas is introduced into the ion source (10) at the point of concentrated electron flow. Ions created in the resultant plasma are expelled from the ion source as an ion beam centered on the axis of the magnetic field. The surfaces of the anode are coated with an electrically conductive non-oxidising layer of Titanium Nitride to prevent a build up of an insulating layer on the anode.
Abstract:
A mass spectrometer system comprising a laser and a mass spectrometer. The mass spectrometer has a vacuum interface that provides entrance of a gaseous sample into an extraction region of the mass spectrometer. The laser is positioned to provide laser light incident on a sample non-gaseous substance positioned adjacent the vacuum interface. The laser light provides vaporization of the sample, which provides a high concentration of gaseous molecules from the sample substance at the vacuum interface.