摘要:
An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane.
摘要:
A method for producing a catalyst-coated membrane includes: preparing and/or providing a first ink having a first ink composition, comprising substrated catalyst particles proton-conducting ionomer and dispersing agent, in which the fraction of the substrated catalyst particles remains behind the fraction of the proton-conducting ionomer; preparing and/or providing at least one second ink having a second ink composition, comprising the substrated catalyst particles, the proton-conducting ionomer and the dispersing agent, in which the fraction of the proton-conducting ionomer remains behind the fraction of the substrated catalyst particles, unwinding a weblike proton-conducting membrane material provided on a roll; applying at least one layer of the first ink with a first application tool onto at least one section of the membrane material; and applying at least one layer of the second ink with a second application tool onto an outermost layer of the first ink deposited onto the membrane material
摘要:
A composite electrolyte membrane having a composite layer that is a composite of a hydrocarbon polymer electrolyte and a fluorine-containing polymer porous substrate, wherein a fractal dimension D exhibiting the distribution of the hydrocarbon polymer electrolyte and the fluorine-containing polymer porous substrate in the composite layer is 1.7 or more. An object of the present invention is to enable a composite electrolyte membrane composed of a hydrocarbon polymer electrolyte and a fluorine-containing polymer porous substrate to achieve high proton conduction ability and high mechanical durability.
摘要:
In an electrolyte membrane for a fuel cell, having nanofiber unwoven cloth buried in an electrolyte resin, the nanofiber unwoven cloth is disposed being exposed only from one face of the electrolyte membrane. The fuel cell includes a MEA having an anode electrode disposed on one face of the electrolyte membrane and having a cathode electrode disposed on the other face thereof, and a pair of separators holding the MEA by sandwiching the MEA therebetween. Thereby, the electrolyte membrane for a fuel cell, the manufacturing method of the electrolyte membrane, and the fuel cell are provided with which the electric power generation property and productivity are improved.
摘要:
A manufacturing method of a proton exchange membrane is provided, which includes the steps as follows. The hydroxyl groups are disposed on the surface of a substrate by a hydrophilic treatment. The hydroxyl groups on the substrate are chemically modified with a coupling agent by a sol-gel process. The substrate is exposed to an amino acid with a phosphonate radical so that the amino acid containing a phosphonate radical can be chemically bonded with the coupling agent. The chemically bonded substrate is immersed in phosphoric acid for absorbing the phosphoric acid. The substrate blended with the phosphoric acid is placed between at least two leak-proof films for the purpose of preventing the leakage of the absorbed phosphoric acid. The proton exchange membrane manufactured by this method enable to retain the phosphoric acid in organic/inorganic complex form and micron/nano complex pore size.
摘要:
This redox flow secondary battery has an electrolyte tank (6) containing: a positive electrode cell chamber (2) containing a positive electrode (1) comprising a carbon electrode; a negative electrode cell chamber (4) containing a negative electrode (3) comprising a carbon electrode; and an electrolyte membrane (5) as a barrier membrane that separates/isolates the positive electrode cell chamber (2) and the negative electrode cell chamber (4). The positive electrode cell chamber (2) contains a positive electrode electrolyte containing an active substance, the negative electrode cell chamber (4) contains a negative electrode electrolyte containing an active substance, and the redox flow secondary battery charges and discharges on the basis of the change in valency of the active substances in the electrolytes. The electrolyte membrane (5) contains an ion exchange resin composition that is primarily a polyelectrolyte polymer, and the electrolyte membrane (5) has a reinforcing material comprising a fluorine-based porous membrane.
摘要:
Disclosed are fuel cell systems, reinforced membrane electrode assemblies, and methods for fabricating a reinforced membrane electrode assembly. In an example, a disclosed method includes depositing an electrode ink onto a first substrate to form a first electrode layer, and applying a first porous reinforcement layer onto a surface of the first electrode layer to form a first catalyst coated substrate. The method also includes depositing a first ionomer solution onto the first catalyst coated substrate to form a first ionomer layer. A membrane porous reinforcement layer is applied onto a surface of the first ionomer layer to form a reinforced membrane layer.
摘要:
A process for manufacturing a reinforced membrane-seal assembly includes: (i) providing a carrier material; (ii) providing a planar reinforcing component having one or more first regions including pores and a second region including pores, the first regions being patches and non-continuous and the second region surrounding the first regions and being continuous; (iii) depositing an ion-conducting component; (iv) drying the ion-conducting component; (v) depositing a seal component; (vi) drying the seal component (vii) removing the carrier material. In embodiments, ion-conducting component fills the pores in the first regions and seal component fills the pores in the second region; steps (ii), (iii) and (v) can be carried out in any order; step (iv) is carried out subsequent to step (iii); step (vi) is carried out subsequent to step (v); and steps (iv) and (vi) are carried out subsequent to step (ii). Also disclosed is an assembly prepared by such process.
摘要:
The present specification provides a polymer electrolyte membrane, a membrane electrode assembly including the polymer electrolyte membrane, and a fuel cell including the membrane electrode assembly.
摘要:
An electrode structure includes a sheet-shaped electrode base member formed of a porous material. The electrode base member is provided with an electrode function part, and a seal function part. The electrode function part has a diffusion layer and a catalyst layer. The seal function part is disposed on at least an outer peripheral region of the electrode function part and formed by impregnating the electrode base member with an elastomer.