Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens includes a service processing module which generates logical screens displaying services and a display screen and swaps the services between the logical screens, and an output module which maps the logical screens to arbitrary locations on the display screen.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens includes a digital signal processing module which receives video information, audio information, or data information and restores a service based on the video information, the audio information or the data information, a service processing module which generates a plurality of logical screens and an overlay screen for displaying the restored service, and an output module which maps the plurality of logical screens generated by the service processing module to different locations on a display screen and allows the overlay screen to overlay the display screen.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens includes a service processing module producing at least one of logical screens and display screens for displaying a service, and an output module mapping the logical screens to arbitrary locations on the display screens and providing the display screens to a plurality of physical display devices.
Abstract:
Disclosed are dual gate CMOS devices and methods for fabricating such devices. The dual gate structures are produced by forming a first gate electrode having first conductive stack on transistors of a first channel type and forming a second gate electrode having a second conductive stack on transistors of a second channel type, wherein the first and second conductive stacks have different compositions for including different work functions (Φ) in the respective transistors. At least one of the first and second conductive stacks will include metal(s) and/or metal compound(s) from which, when subjected to an appropriate thermal treatment, the metal(s) will diffuse to the interface formed between in the gate dielectric layer and the gate electrode and thereby modify the electrical properties of the associated transistors as reflected in, for example, a Vfb shift.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring the multiple screens are provided. The apparatus for providing multiple screens retrieves the type of the screens in the device and connection relationship therebetween in order to dynamically configure multiple screens that provide a plurality of services on a physical display device. The apparatus for providing multiple screens includes an operation module generating at least one of screens for displaying a received service, and a retrieval module retrieving a screen on which an application included in the service is executed among the screens.
Abstract:
A method for preparing powder granules by a liquid condensation process comprising preparing a slurry by mixing powders, a binding agent and a binding agent soluble solvent, dropping the slurry to a binding agent insoluble solvent to fix the binding agent so that the binding agent can not be released to a surface of a droplet of the slurry, coagulating the droplet by solvent exchange between the soluble solvent inside the droplet and the insoluble solvent at the surface of the droplets, and separating the coagulated droplet from the insoluble solvent, drying it and completely removing a residual solvent.
Abstract:
The present invention relates to ceramic-NiO composite powders which can be used to form ceramic-NiO composite body anodes. These anodes possess an interpenetrating network structure and can be used in solid oxide fuel cell (SOFC) by The present invention also descibes methods of preparing these powder, anodes and fuel cells.
Abstract:
There are provided methods of fabricating a silicon-doped metal oxide layer on a semiconductor substrate using an atomic layer deposition technique. The methods include an operation of repeatedly performing a metal oxide layer formation cycle K times and an operation of repeatedly performing a silicon-doped metal oxide layer formation cycle Q times. At least one of the values K and Q is an integer of 2 or more. K and Q are integers ranging from 1 to about 10 respectively. The metal oxide layer formation cycle includes the steps of supplying a metal source gas to a reactor containing the substrate, and then injecting an oxide gas into the reactor. The silicon-doped metal oxide layer formation cycle includes supplying a metal source gas including silicon into a reactor containing the substrate, and then injecting an oxide gas into the reactor. The sequence of operations of repeatedly performing the metal oxide layer formation cycle K times, followed by repeatedly performing the silicon-doped metal oxide layer formation cycle Q times, is performed one or more times until a silicon-doped metal oxide layer with a desired thickness is formed on the substrate. In addition, a method of fabricating a silicon-doped hafnium oxide (Si-doped HfO2) layer according to a similar invention method is also provided.
Abstract:
Disclosed is an optical printed circuit board (PCB) having a multi-channel optical waveguide, which comprises: an optical waveguide having an optical path for transmitting light beams; a groove for penetrating the optical waveguide; and an optical interconnection block inserted in the groove and connected to the optical waveguide to transmit the light beams, wherein the optical interconnection block includes an optical fiber bundle bent by the angle of 90°. The optical interconnection block connects a plurality of multi-layered optical waveguides to transmit light beams to the optical waveguides. The optical fiber bundle is installed as a medium of the multi-channel optical waveguide in the optical PCB.
Abstract:
An electrode pattern for a solid oxide fuel cell (SOFC) comprises a plurality of micro-sized first electrode patterns formed on an upper surface of a substrate including an electrolyte layer, and a plurality of micro-sized second electrode patterns formed between the first electrode patterns. The electrode pattern is formed by using a mold fabricated by a photoresist process. In order to form the electrode pattern, a paste for an electrode including a thermo-setting resin and an electrode powder is prepared. The electrode having a micro-sized or sub-micro sized width and a high precision is simply fabricated, and a miniaturized SOFC having a high function is fabricated.