Abstract:
A water and ice detection and quantitative assessment system (“WIDQAS”) for moisture detection and assessment of water accumulation on an aircraft having an airframe that has at least one enclosed space within the airframe is described. The WIDQAS may include a plurality of sensors and a data measurement device. The plurality of sensors may be arranged in the at least one enclosed space within the airframe and each sensor of the plurality of sensors may be configured to detect a presence of moisture in the at least one enclosed space and generate a data measurement that is responsive to the detection of moisture in the at least one enclosed space. The data measurement device is in signal communication with the plurality of sensors and may be configured to record the data measurement for each sensor and record identifying information about the measurement during a flight of the aircraft.
Abstract:
Pre-impregnated composite fiber materials, methods of manufacturing pre-impregnated composite fiber materials, and methods for determining the suitability of a pre-impregnated composite fiber material for incorporation into a composite structure.
Abstract:
The present disclosure relates to a system for testing a structure of an object. According to one embodiment, the system includes a vibration initiator that imparts an acoustic shockwave to an object. The system also includes an acoustic detector array that senses the acoustic shockwave as it propagates through the object, in which the acoustic detector array comprises a plurality of quantum microphones. The system further includes a reporting unit that receives sensed acoustic shockwave data from the acoustic detector array and produces a structural integrity report.
Abstract:
A system for the detection of foreign object debris material on a surface of a composite part being manufactured. A platform is configured to move over the surface. A thermal excitation source is fixed to the platform and configured to direct infrared radiation across the surface. An infrared camera is also fixed to the platform and configured to scan the surface as the platform moves over the surface to detect and output a signal proportional to infrared radiation emitted by the surface and/or by any foreign object debris material on the surface in response to the infrared radiation from the excitation source. A controller is coupled to the excitation source and to the infrared camera and is configured to compare the signal from the infrared camera with a first predetermined threshold signal to detect if any foreign object debris material is located on the surface.
Abstract:
A method for monitoring a temperature of a battery is provided. The method includes applying a thermochromatic coating to a surface of the battery. The method additionally includes directing electromagnetic radiation towards the thermochromatic coating, observing a thermochromatic response of the thermochromatic coating to the electromagnetic radiation, and identifying at least one portion of the battery that has experienced a temperature above a predefined threshold temperature, based on the thermochromatic response.
Abstract:
A system and method are provided to fabricate a composite part formed of a plurality of pieces of composite material in accordance with a predefined weight requirement. In the context of a system, a source of electromagnetic signals configured to impinge upon a supply of composite material is provided. The system also includes a detector to capture the electromagnetic signals following propagation through the supply of composite material during which at least some of the electromagnetic signals are absorbed by the composite material in a manner proportional to the density of the composite material. The system further includes a computing system to generate a weight distribution map of the supply of composite material based upon the electromagnetic signals captured following propagation through the supply. The weight of a plurality of pieces of composite material cut from the supply of composite material and combined into a composite part is determinable.
Abstract:
An automatic component fabrication system, for use in fabricating a component, includes a control system having a memory that includes a computerized model of the component to be fabricated. A first monitoring system including a first illumination device and at least one camera is communicatively coupled to the control system and is configured to determine a position of the material at a first location. A cutting system is communicatively coupled to the control system and is configured to cut the component from a sheet of material based on the determined position and the computerized model. The automatic component fabrication system also includes a second monitoring system including a second illumination device and at least one camera. The second monitoring system is communicatively coupled to the control system and is configured to compare the fabricated component to the computerized model.
Abstract:
Chopped fiber composite systems and methods are disclosed. Sorting systems include a conveyor, an imager, a plurality of receptacles, a pneumatic device, and controller. Molding systems include a conveyor, an imager, a mold, a pneumatic device, and a controller. The controller directs the pneumatic device to alter the freefall of chopped fiber composite pieces based on characteristics of the chopped fiber composite pieces as they drop from the conveyor and into a receptacle or a mold. Sorting and molding methods include dropping chopped fiber composite pieces, detecting characteristics of the dropping pieces, and directing the pieces based on the detected characteristics.
Abstract:
An apparatus includes a first component that has a first coefficient of thermal expansion, a fastener that extends at least partially through the first component. The fastener has a second coefficient of thermal expansion that is different than the first coefficient of thermal expansion. The apparatus also includes a nano-tube mesh coupled to outer surfaces of the first component and fastener. Further, the apparatus includes a second component applied to the nano-tube mesh and outer surface of the first component. The nano-tube mesh may include carbon nano-tubes and/or nitrogen-doped carbon nano-tubes.
Abstract:
A system and method is disclosed for detecting defects in the surface of a workpiece such as a fiberglass or composite part. A light source is positioned to direct light at the workpiece at an oblique angle with respect to the surface of the workpiece. At least one camera is positioned to detect light reflected from the workpiece and to generate a light signal corresponding to the reflected light. A polarizing lens is positioned between each of the at least one cameras and the workpiece. A processor is coupled to each of the at least one cameras to receive the corresponding light signals. The processor is programmed to process the light signals to detect any defects in the surface of the workpiece based on relative magnitudes of the received light signal. A video display and a printer are preferably coupled to the processor to show any detected defects.