Abstract:
Various embodiment of the present invention are directed to organic molecules that are reconfigurable under application of an external electric field. One organic molecule embodiment of the present invention has the structure: where L1X1 and L2X2 are optional connector groups, A represents an electron acceptor group, D represents an electron donor group, R and R′ represent spacer molecules, and R1, R2, R3, R4, R5, R6, R7, and R8 represent atoms and hydrocarbons.
Abstract translation:本发明的各种实施方案涉及在外部电场的应用下可重新配置的有机分子。 本发明的一个有机分子实施方案具有以下结构:其中L 1 X 1和X 2 X 2 X 2 是可选的连接基团,A表示电子受体基团,D表示电子给体基团,R和R'表示间隔基分子,R 1,R 2, R 3,R 4,R 5,R 6,R 7和R 7, 8 SUB>表示原子和烃。
Abstract:
Raman systems include a radiation source, a radiation detector configured to detect Raman scattered radiation, and a Raman signal-enhancing structure. The Raman signal-enhancing structure includes a first layer of Raman signal-enhancing material, a substantially monomolecular layer of molecules disposed on at least a portion of the first layer of Raman signal-enhancing material, and a second layer of Raman signal-enhancing material disposed on at least a portion of the substantially monomolecular layer of molecules. The second layer of Raman signal-enhancing material is disposed on a side of the layer of molecules opposite the first layer of Raman signal-enhancing material. Methods of performing Raman spectroscopy include providing such a Raman signal-enhancing structure, providing an analyte on the Raman signal-enhancing structure, irradiating the analyte and the structure, and detecting Raman scattered radiation.
Abstract:
A contact lithography system includes a patterning tool having a pattern for transfer to a substrate; and a sensor disposed on the patterning tool for sensing a magnetic pattern disposed on the substrate to determine alignment between the patterning tool and the substrate. A method of aligning a patterning tool of a contact lithography system with a substrate includes detecting a pattern of magnetic material on the substrate with a sensor on the patterning tool to determine alignment of the patterning tool with respect to the substrate.
Abstract:
SERS-active structures including features having nanoscale dimensions are disclosed, including methods for forming such SERS-active structures and methods for forming a plurality of such SERS-active structures. Methods for performing SERS using SERS-active structures also are disclosed.
Abstract:
Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.
Abstract:
A method of forming an electrical interconnect, which includes a first electrode, an interlayer of a programmable material disposed over at least a portion of the first electrode, and a second electrode disposed over the programmable material at a non-zero angle relative to the first electrode. The interlayer includes a modified region having differing electrical properties than the rest of the interlayer, sandwiched at the junction of the first electrode and the second electrode. The interlayer may be exposed to a focused beam to form the modified region.
Abstract:
A multi-tiered network for gathering detected condition information includes a first tier having first tier nodes and a second tier having a second tier node. The second tier node is operable to receive detected condition information from at least one of the first tier nodes in a substantially autonomous manner. In addition, the second tier node is operable to at least one of store, process, and transmit the detected condition information. The network also includes a third tier having a third tier node configured to receive the detected condition information and to at least one of store and process the detected condition information.
Abstract:
A contact lithography system includes a patterning tool bearing a pattern; a substrate chuck for chucking a substrate to receive the pattern from the patterning tool; where the system deflects a portion of either the patterning tool or the substrate to bring the patterning tool and a portion of the substrate into contact; and a stepper for repositioning either or both of the patterning tool and substrate to align the pattern with an additional portion of the substrate to also receive the pattern. A method of performing contact lithography comprising: deflecting a portion of either a patterning tool or a substrate to bring the patterning tool and a portion of the substrate into contact; and repositioning either or both of the patterning tool and substrate to align a pattern on the patterning tool with an additional portion of the substrate to also receive the pattern.
Abstract:
Integrated radiation source/amplifying structures for use in surface enhanced Raman spectroscopy (SERS) and hyper-SERS are disclosed. The structures include a radiation source integrated with a SERS-active structure that is provided within a resonant cavity. SERS and hyper-SERS systems employing the integrated radiation source/amplifying structures are disclosed. Methods of performing SERS and hyper-SERS are also disclosed.
Abstract:
The present invention provides a method of forming a controlled distribution of nano-particles on a surface. The method includes forming a layer of block copolymer having at least two types of blocks. Each type of block has a respective type of polymer. The block copolymer has an exposed surface and the blocks have exposed surface portions. The blocks are distributed on a substrate. The method also includes attaching nano-particles to the surface portions of at least one and less than all types of the blocks so that the attached particles form a controlled distribution on the surface of the block copolymer.